Skip to main content
Log in

Progress of synthesizing methods and properties of fluorinated carbon nanotubes

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In this paper, the recent development of fluorinated carbon nanotubes (F-CNTs) was introduced. The synthesizing methods of F-CNTs, including direct fluorination and plasma treatment, were discussed in detail, and the effects of factors, such as the temperature and pressure in fluorination as well as the kind of fluorine source and carbon nanotubes, on the structures and properties of F-CNTs were also summarized. In the mean time, the special physical and chemical properties of F-CNTs and the relevant applied fields were described briefly, the exisiting problems of F-CNTs were summed up, and the direction of future development was also discussed in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58

    Article  Google Scholar 

  2. Liang W, Bockrath M, Bozovic D, et al. Fabry-Perot interference in a nanotube electron waveguide. Nature, 2001, 411: 665–668

    Article  Google Scholar 

  3. Hamada N, Sawada S I, Oshiyama A. New one-dimensional conductors: Graphitic microtubules. Phys Rev Lett, 1992, 68: 1579–1581

    Article  Google Scholar 

  4. Mintmire J W, Dunlap B I, White C T. Are fullerene tubules metallic? Phys Rev Lett, 1992, 68: 631–634

    Article  Google Scholar 

  5. Rubio A, Corkill J L, Cohen M L. Theory of graphitic boron nitride nanotubes. Phys Rev B, 1994, 49: 5081–5085

    Article  Google Scholar 

  6. Chopra N G, Luyken R J, Cherrey K. Boron nitride nanotubes. Science, 1995, 269: 966–972

    Article  Google Scholar 

  7. Nakajima T. Fluorine-carbon and Fluoride-carbon Materials: Chemistry, Physics and Application. New York: Marcel Dekker, 1995. 6–9

    Google Scholar 

  8. Tressaud A, Durand E, Labrugère C. Surface modification of several carbon-based materials: Comparison between CF4 rf plasma and direct F2-gas fluorination routes. J Fluorine Chem, 2004, 125: 1639–1648

    Article  Google Scholar 

  9. Chong Y B, Ohara H. Modification of carbon fiber surfaces by direct fluorination. J Fluorine Chem, 1992, 57: 169–175

    Article  Google Scholar 

  10. Hany P, Yazami R, Hamwi A. Low-temperature carbon fluoride for high power density lithium primary batteries. J Power Source, 1997, 68: 708–710

    Article  Google Scholar 

  11. Kaneko K, Yang C M, Okino F, et al. Adsorptive properties of designed fluorinated carbon nanotubes. Adsorpt Sci Technol, 2000: 309–313

  12. Lee J Y, An K H, Heo J K, et al. Fabrication of supercapacitor electrodes using fluorinated single-walled carbon nanotubes. J Phys Chem B, 2003, 107: 8812–8815

    Article  Google Scholar 

  13. Nakajima T, Watanabe N. Graphite Fluorides and Carbon-fluorine Comcompounds. Boca Raton: CRC Press, 1990. 11–15

    Google Scholar 

  14. Watanabe N, Nakajima T, Touhara H. Graphite Fluorides. Elsevier: Amsterdam, 1988. 3–6

    Google Scholar 

  15. Mickelson E T, Huffman C B, Rinzler A G, et al. Fluorination of single-wall carbon nanotubes. Chem Phys Lett, 1998, 296: 188–194

    Article  Google Scholar 

  16. Plank N O V, Forrest G A, Cheung R, et al. Electronic properties of n-type carbon nanotubes prepared by CF4 plasma fluorination and amino functionalization. J Phys Chem B, 2005, 109: 22096–22101

    Article  Google Scholar 

  17. Zhang L, Yang J, Edwards C L, et al. Diels-Alder addition to fluorinated single walled carbon nanotubes. Chem Commun, 2005, 26: 3265–3267

    Article  Google Scholar 

  18. Khabashesku V N, Billips W E, Margrave J L. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc Chem Res, 2002, 35: 1087–1095

    Article  Google Scholar 

  19. Bettinger H F. Experimental and computational investigations of the properties of fluorinated single-walled carbon nanotubes. Chem Phys Chem, 2003, 4: 1283–1289

    Google Scholar 

  20. Vander Wal R L, Miyoshi K, Street K W, et al. Friction properties of surface-fluorinated carbon nanotubes. Wear, 2005, 259: 738–743

    Article  Google Scholar 

  21. Miyagawa H, Drzal L T. Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes. Polymer, 2004, 45: 5163–5170

    Article  Google Scholar 

  22. Tasis D, Tagmatarchis N, Bianco A, et al. Chemistry of carbon nanotubes. Chem Rev, 2006, 106: 1105–1136

    Article  Google Scholar 

  23. Banerjee S, Hemraj-Benny T, Wong S S. Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater, 2005, 17: 17–29

    Article  Google Scholar 

  24. Lee Y S. Synthesis and properties of fluorinated carbon materials. J Fluorine Chem, 2007, 128: 392–403

    Article  Google Scholar 

  25. Okotrub A V, Maksimova N, Duda T A, et al. Fluorination of CNx nanotubes. Fullerenes Nanotubes Carbon Nanostruct, 2004, 12: 99–104

    Article  Google Scholar 

  26. Hamwi A, Gendraud P, Caucher H, et al. Electrochemical properties of carbon nanotube fluorides in a lithium cell system. Mol Cryst Liq Cryst Sci Technol Sect A Mol Crys Liq Cryst, 1998, 310: 185–190

    Article  Google Scholar 

  27. Yuan J S. Application and preparation method of graphite fluoride. China Non-metallic Mining Industry Herald, 2007, 62: 25–33

    Google Scholar 

  28. Mickelson E T, Huffman C B, Rinzler A G, et al. Fluorination of single-wall carbon nanotubes. Chem Phys Lett, 1998, 296: 188–194

    Article  Google Scholar 

  29. Lee Y S, Cho T H, Lee B K, et al. Surface properties of fluorinated single-walled carbon nanotubes. J Fluorine Chem, 2003, 120: 99–104

    Article  Google Scholar 

  30. An K H, Heo J G, Jeon K G, et al. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl Phys Lett, 2002, 80: 4235–4237

    Article  Google Scholar 

  31. Nakajima T, Matsuo Y, Zemva B, et al. Synthesis of fluorine-graphite intercalation compounds by elemental fluorine and high oxidation-state transition-metal fluorides. Carbon, 1996, 34: 1595–1598

    Article  Google Scholar 

  32. Nakajima T, Kasamatsu S, Matsuo Y. Synthesis and characterization of fluorinated carbon nanotube. Eur J Solid Inorg Chem, 1996, 33: 831–840

    Google Scholar 

  33. Hamwi A, Alvergnat H, Bonnamy S, et al. Fluorination of carbon nanotubes. Carbon, 1997, 35: 723–728

    Article  Google Scholar 

  34. Gupta V, Nakajima T, Ohzawa Y, et al. A study on the formation mechanism of graphite fluorides by Raman spectroscopy. J Fluorine Chem, 2003, 120: 143–150

    Article  Google Scholar 

  35. Qi H, Qian C, Liu J. Synthesis of uniform double-walled carbon nanotubes using iron disilicide as catalyst. Nano Lett, 2007, 7: 2417–2421

    Article  Google Scholar 

  36. Muramatsu H, Kim Y A, Hayashi T, et al. Fluorination of double-walled carbon nanotubes. Chem Commun, 2005, 15: 2002–2004

    Article  Google Scholar 

  37. Yudanov N F, Obotrub A V, Shubin Yu V, et al. Fluorination of arc-produced carbon material containing multiwall nanotubes. Chem Mater, 2002, 14: 1472–1476

    Article  Google Scholar 

  38. Okotrub A V, Yudanov N F, Chuvilin A L, et al. Fluorinated cage multiwall carbon nanoparticles. Chem Phys Lett, 2000, 322: 231–236

    Article  Google Scholar 

  39. Lavskaya Yu V, Bulusheva L G, Okotrub A V, et al. Comparative study of fluorinated single- and few-wall carbon nanotubes by X-ray photoelectron and X-ray absorption spectroscopy. Carbon, 2009, 47: 1629–1636

    Article  Google Scholar 

  40. Bulusheva L G, Gevko P N, Okotrub A V, et al. Thermal behavior of fluorinated double-walled carbon nanotubes. Chem Mater, 2006, 18: 4967–4971

    Article  Google Scholar 

  41. Liu X F, Xiao J R, Li Y Z, et al. Study on fluorinated amorphous carbon thin films prepared by CF4 and CH4. Vacuum, 2004, 41: 22–25

    Google Scholar 

  42. Yokomichi H, Hayashi T, Amano T, et al. Preparation of fluorinated amorphous carbon thin films. J Non Cryst Solids, 1998, 227: 641–644

    Article  Google Scholar 

  43. Bottani C E, Lamperti A, Nobili L, et al. Structure and mechanical properties of PACVD fluorinated amorphous carbon films. Thin Solid Films, 2003, 433: 149–154

    Article  Google Scholar 

  44. Huang F, Cheng S H, Ning Z, et al. The influence of annealing in vacuum on the structures of a-C: F thin films. Acta Phys Sinica, 2002, 51: 1383–1386

    Google Scholar 

  45. Piraux L, Bayot V, Issi J P, et al. Electrical and thermal properties of fluorine-intercalated graphite fibers. Phys Rev B, 1990, 41: 4961–4969

    Article  Google Scholar 

  46. Felten A, Bittencourt G, Pireaux J J, et al. Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments. J Appl Phys, 2005, 98: 074308

    Article  Google Scholar 

  47. Plank N O V, Jiang L D, Cheung R. Fluorination of carbon nanotubes in CF4 plasma. Appl Phys Lett, 2003, 83: 2426–2428

    Article  Google Scholar 

  48. Khare B N, Wilhite P, Meyyapan M. The fluorination of single wall carbon nanotubes using microwave plasma. Nanotech, 2004, 15: 1650–1654

    Article  Google Scholar 

  49. Shoda K, Kohno H, Kobayashi Y, et al. Feasibility study for sidewall fluorination of SWCNTs in CF4 plasma. J Appl Phys, 2008, 104: 113529

    Article  Google Scholar 

  50. Felten A, Ghijsen J, Pireaux J J, et al. Photoemission study of CF4 rf-Plasma treated multi-wall carbon nanotubes. Carbon, 2008, 46: 1271–1275

    Article  Google Scholar 

  51. Shoda K, Takeda S. Systematic characterization of carbon nanotubes functionalized in CF4 plasma. Jpn J Appl Phys, 2007, 96: 216103

    Google Scholar 

  52. Kita Y, Watanabe N, Fuji Y. Chemical composition and crystal structure of graphite fluoride. J Am Chem Soc, 1979, 101: 3832–3841

    Article  Google Scholar 

  53. Hamwi A, Daoud M, Cousseins J C. Graphite fluorides prepared at room temperature 1. Synthesis and characterization. Synth Met, 1988, 26: 89–98

    Article  Google Scholar 

  54. Nakajima T, Watanabe N, Kameda I, et al. Preparation and electrical conductivity of fluorine-graphite fiber intercalation compound. Carbon, 1986, 24: 343–351

    Article  Google Scholar 

  55. Kelly K F, Chiang I W, Mickelson E T, et al. Insight into the mechanism of sidewall functionalization of single-walled nanotubes: An STM study. Chem Phys Lett, 1999, 313: 445–450

    Article  Google Scholar 

  56. Bauschlicher C W. Hydrogen and fluorine binding to the sidewalls of a (10, 0) carbon nanotube. Chem Phys Lett, 2000, 322: 237–241

    Article  Google Scholar 

  57. Kudin K N, Bettinger H F, Scuseria G E. Fluorinated single-wall carbon nanotubes. Phys Rev B, 2001, 63: 045413

    Article  Google Scholar 

  58. Khabashesku V N, Billups W E, Margrave J L. Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc Chem Res, 2002, 35: 1087–1095

    Article  Google Scholar 

  59. Thomas P, Delbé K, Himmel D, et al. Tribological properties of low-temperature graphite fluorides. Influence of the structure on the lubricating performances. J Phys Chem Solids, 2006, 67: 1095–1099

    Article  Google Scholar 

  60. Delabarre C, Guérin K, Dubois M, et al. Highly fluorinated graphite prepared from graphite fluoride formed using BF3 catalyst. J Fluor Chem, 2005, 126: 1078–1087

    Article  Google Scholar 

  61. Gu Z, Peng H, Hauge R H, et al. Cutting single-wall carbon nanotubes through fluorination. Nano Lett, 2002, 2: 1009–1013

    Article  Google Scholar 

  62. Mickelson E T, Chiang I W, Zimmerman J T, et al. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J Phys Chem B, 1999, 103: 4318–4322

    Article  Google Scholar 

  63. Marcoux P R, Schreiber J, Batail P, et al. A spectroscopic study of the fluorination and defluorination reactions on single-walled carbon nanotubes. Phys Chem Chem Phys, 2002, 4: 2278–2285

    Article  Google Scholar 

  64. Zhao W, Song C, Zheng B, et al. Thermal recovery behavior of fluorinated single-walled carbon nanotubes. J Phys Chem B, 2002, 106: 293–296

    Article  Google Scholar 

  65. Pehrsson P E, Zhao W, Baldwin J W, et al. Thermal fluorination and annealing of single-wall carbon nanotubes. J Phys Chem B, 2003, 107: 5690–5695

    Article  Google Scholar 

  66. An K H, Parka K A, Heo J G, et al. Structural transformation of fluorinated carbon nanotubes induced by in situ electron-beam irradiation. J Am Chem Soc, 2003, 125: 3057–3058

    Article  Google Scholar 

  67. Boul P J, Liu J, Mickelson E T, et al. Reversible sidewall functionalization of buckytubes. Chem Phys Lett, 1999, 310: 367–372

    Article  Google Scholar 

  68. Saini R K, Chiang I W, Peng H, et al. Covalent sidewall functionalization of single wall carbon nanotubes. J Am Chem Soc, 2003, 125: 3617–3621

    Article  Google Scholar 

  69. Stevens J L, Kini U V, Huang A Y, et al. Sidewall functionalization of single-walled carbon nanotubes through C-N bond forming substitution reactions of fluoronanotubes. Nano Tech, 2003, 3: 169–172

    Google Scholar 

  70. Stevens J L, Huang A, Peng H, et al. Sidewall amino-functionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines. Nano Lett, 2003, 3: 331–336

    Article  Google Scholar 

  71. Zhang L, Zhang J, Schmandt N, et al. AFM and STM characterization of thiol and thiophene functionalized SWNTs: Pitfalls in the use of chemical markers to determine the extent of sidewall functionali zation in SWNTs. Chem Commun, 2005, 43: 5429–5431

    Article  Google Scholar 

  72. Pulikkathara M X, Kuznetsov O V, Khabashesku V N. Sidewall covalent functionalization of single wall carbon nanotubes through reactions of fluoronanotubes with urea, guanidine, and thiourea. Chem Mater, 2008, 20: 2685–2695

    Article  Google Scholar 

  73. Valentini L, Puglia D, Armentano I, et al. Sidewall functionalization of single-walled carbon nanotubes through CF4 plasma treatment and subsequent reaction with aliphatic amines. Chem Phys Lett, 2005, 403: 385–389

    Article  Google Scholar 

  74. Valentini L, Armentano I, Mengoni F, et al. Chemical gating and photoconductivity of CF4 plasma-functionalized single-walled carbon nanotubes with adsorbed butylamine. J Appl Phys, 2005, 97: 114320

    Article  Google Scholar 

  75. Velentini L, Macan J, Armentano I, et al. Modification of fluorinated single-walled carbon nanotubes with aminosilane molecules. Carbon, 2006, 44: 2196–2201

    Article  Google Scholar 

  76. Zhang L, Kiny V U, Peng H, et al. Functionalization of nanoscale diamond powder: Fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem Mater, 2004, 16: 2055–2061

    Article  Google Scholar 

  77. Rinzler A G, Liu J, Dai H, et al. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Appl Phys Sect A Mater Sci Process, 1998, 67: 29–38

    Article  Google Scholar 

  78. Liu J, Rinzler A G, Dai H, et al. Fullerene pipes. Science, 1998, 280: 1253–1256

    Article  Google Scholar 

  79. Chamssedine F, Dubois M, Guérin K, et al. Reactivity of carbon nanofibers with fluorine gas. Chem Mater, 2007, 19: 161–172

    Article  Google Scholar 

  80. Yazami R, Ozawa Y, Fultz B, et al. The kinetics of sub-fluorinated carbon fluoride cathodes for lithium batteries. ECS Trans, 2007, 3: 199–211

    Article  Google Scholar 

  81. Yazami R, Hamwi A, Guérin K, et al. Fluorinated carbon nanofibres for high energy and high power densities primary lithium batteries. Electrochem Commun, 2007, 9: 1850–1855

    Article  Google Scholar 

  82. Zhang W, Guérin K, Dubois M, et al. Carbon nanofibres fluorinated using TbF4 as fluorinating agent. Part I: Structural properties. Carbon, 2008, 46: 1017–1024

    Article  Google Scholar 

  83. Kudin K N, Scuseria G E, Yakobson B I. C2F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B, 2001, 64: 235406

    Article  Google Scholar 

  84. Miyagawa H, Rich M J, Drzal L T. Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers. Thermochim Acta, 2006, 442: 67–73

    Article  Google Scholar 

  85. Geng H Z, Rosen R, Zheng B, et al. Fabrication and properties of composites of poly (ethylene oxide) and functionalized carbon nanotubes. Adv Mater, 2002, 14: 1387–1390

    Article  Google Scholar 

  86. Owens F J. Properties of composites of fluorinated single walled carbon nanotubes and polyacrylonitrile. Mater Lett, 2005, 59: 3720–3723

    Article  Google Scholar 

  87. Ho K K C, Lamoriniere S, Kalinka G, et al. Interfacial behavior between atmospheric-plasma-fluorinated carbon fibers and poly(vinylidene fluoride). J Colloid Interface Sci, 2007, 313: 476–484

    Article  Google Scholar 

  88. Zhu J, Peng H, Rodriguez-Macias F, et al. Reinforcing epoxy polymer composites through covalent integration of functionalized nanotubes. Adv Funct Mater, 2004, 14: 643–468

    Article  Google Scholar 

  89. Tenne R, Homyonfer M, Feldman Y. Nanoparticles of layered compounds with hollow cage structures (inorganic fullerene-like structures). Chem Mater, 1998, 10: 3225–3238

    Article  Google Scholar 

  90. Rapoport L, Bilik Y, Feldman Y, et al. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature, 1997, 387: 791–793

    Article  Google Scholar 

  91. Chowalla M, Amaratunga G A J. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature, 2000, 407: 164–167

    Article  Google Scholar 

  92. Gisser H, Petronio M, Shapiro A. Graphite fluoride as a solid lubricant. Lubr Eng, 1972, 28: 161–164

    Google Scholar 

  93. Ler J G Q, Hao Y, Thong J T L. Effect of sidewall modification in the determination of friction coefficient of vertically aligned carbon nanotube films using friction force microscopy. Carbon, 2007, 45: 2737–2743

    Article  Google Scholar 

  94. Dai H. Carbon nanotubes: Opportunities and challenges. Surf Sci, 2002, 500: 218–241

    Article  Google Scholar 

  95. Heer W A, Chatelain A, Ugarte D. Carbon nanotube field-emission electron source. Science, 1995, 270: 1179–1180

    Article  Google Scholar 

  96. Quinn B M, Lemay S G. Single-walled carbon nanotubes as templates and interconnects for nanoelectrodes. Adv Mater, 2006, 18: 171–174

    Article  Google Scholar 

  97. Fan S S, Chapline M G, Franlin N B, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283: 512–514

    Article  Google Scholar 

  98. Plank N O V, Cheung R. Functionalisation of carbon nanotubes for molecular electronics. Microelectron Eng, 2004, 73–74: 578–582

    Article  Google Scholar 

  99. Hou Z, Cai B, Liu H, et al. Ar, O-2, CHF3, and SF6 plasma treatments of screen-printed carbon nanotube films for electrode applications. Carbon, 2008, 46: 405–413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Chen, Y., Feng, Y. et al. Progress of synthesizing methods and properties of fluorinated carbon nanotubes. Sci. China Technol. Sci. 53, 1225–1233 (2010). https://doi.org/10.1007/s11431-010-0137-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-010-0137-x

Keyword

Navigation