Skip to main content

Synthesis Methods of Carbon Nanotubes

  • Reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

Carbon nanotubes (CNTs) with their extraordinary mechanical, electrical, and thermal properties have built broad interest in most areas of science and engineering and are utilized for many applications in the nanotechnology area. There are many approaches for CNT synthesis. While arc discharge, laser ablation, and chemical vapor deposition are the most common methods, lots of rarely utilized CNT production methods were reported in the literature. In this chapter, a detailed discussion about CNT synthesis methods with their experimental process, advantages, and disadvantages are provided. Especially, the CVD method, which is the most promising CNT synthesis method, has been reviewed with its subtypes. CNT synthesis method directly defines the type and properties of nanotubes. Therefore, researchers are still working on new methods and the development of currently used methods. Literature studies indicate that different synthesis methods come to the fore for different features such as SWCNT or MWCNT production, vertically aligned nanotubes, high yield synthesis, large-area synthesis, etc. In this chapter, a general overview and comparison of these methods are made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboul-Enein AA, Awadallah AE, Abdel-Rahman AA-H, Haggar AM (2018) Synthesis of multi-walled carbon nanotubes via pyrolysis of plastic waste using a two-stage process. Fullerenes Nanotubes Carbon Nanostruct 26(7):443–450

    Article  CAS  Google Scholar 

  • Ando Y (1994) The preparation of carbon nanotubes. Fullerenes Nanotubes Carbon Nanostruct 2(2):173–180

    CAS  Google Scholar 

  • Arora N, Sharma N (2014) Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam Relat Mater 50:135–150

    Article  CAS  Google Scholar 

  • Baddour CE, Briens C (2005) Carbon nanotube synthesis: a review. Int J Chem React Eng 3:R3

    Google Scholar 

  • Borsodi N, Szentes A, Miskolczi N, Wu C, Liu X (2016) Carbon nanotubes synthetized from gaseous products of waste polymer pyrolysis and their application. J Anal Appl Pyrolysis 120:304–313

    Article  CAS  Google Scholar 

  • Bower C, Zhou O, Zhu W, Werder D, Jin S (2000) Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl Phys Lett 77(17):2767–2769

    Article  CAS  Google Scholar 

  • Chen G, Fray D (2003) Recent development in electrolytic formation of carbon nanotubes in molten salts. J Mining Metallurgy B Metallurgy 39(1–2):309–342

    Article  CAS  Google Scholar 

  • Chen M, Chen C-M, Chen C-F (2002) Preparation of high yield multi-walled carbon nanotubes by microwave plasma chemical vapor deposition at low temperature. J Mater Sci 37(17):3561–3567

    Article  CAS  Google Scholar 

  • Chou Y-C, Wu H-C, Hsieh C-K (2015) From graphene to carbon nanotube: the oxygen effect on the synthesis of carbon nanomaterials on nickel foil during CVD process. Jpn J Appl Phys 55(1S):01AE12

    Article  Google Scholar 

  • Gogotsi Y, Libera JA, Yoshimura M (2000) Hydrothermal synthesis of multiwall carbon nanotubes. J Mater Res 15(12):2591–2594

    Article  CAS  Google Scholar 

  • Gspann T, Smail F, Windle A (2014) Spinning of carbon nanotube fibres using the floating catalyst high temperature route: purity issues and the critical role of Sulphur. Faraday Discuss 173:47–65

    Article  CAS  Google Scholar 

  • Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled manotubes by laser vaporization. Chem Phys Lett 243(1–2):49–54

    Article  CAS  Google Scholar 

  • Harris PJ (2007) Solid state growth mechanisms for carbon nanotubes. Carbon 45(2):229–239

    Article  CAS  Google Scholar 

  • Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306(5700):1362–1364

    Article  CAS  Google Scholar 

  • Hsu CM, Lin CH, Chang HL, Kuo CT (2002) Growth of the large area horizontally-aligned carbon nanotubes by ECR-CVD. Thin Solid Films 420:225–229

    Article  Google Scholar 

  • Huang X, Sun S, Tu G (2020) Investigation of mechanical properties and oxidation resistance of CVD TiB2 ceramic coating on molybdenum. J Mater Res Technol 9(1):282–290

    Article  CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  CAS  Google Scholar 

  • Iijima S, Ajayan P, Ichihashi T (1992) Growth model for carbon nanotubes. Phys Rev Lett 69(21):3100

    Article  CAS  Google Scholar 

  • Kataura H, Kumazawa Y, Maniwa Y, Ohtsuka Y, Sen R, Suzuki S, Achiba Y (2000) Diameter control of single-walled carbon nanotubes. Carbon 38(11–12):1691–1697

    Article  CAS  Google Scholar 

  • Kong J, Soh HT, Cassell AM, Quate CF, Dai H (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705):878–881

    Article  CAS  Google Scholar 

  • Lee CJ, Kim DW, Lee TJ, Choi YC, Park YS, Lee YH, Choi WB, Lee NS, Park GS, Kim JM (1999) Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition. Chem Phys Lett 312:5

    Google Scholar 

  • Lee CJ, Park J (2000) Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Appl Phys Lett 77(21):3397–3399

    Article  CAS  Google Scholar 

  • Lee CJ, Park J, Jeong AY (2002) Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition. Chem Phys Lett 360(3–4):250–255

    Article  CAS  Google Scholar 

  • Manafi S, Nadali H, Irani H (2008) Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method. Mater Lett 62(26):4175–4176

    Article  CAS  Google Scholar 

  • Martin I, Rius G, Atienzar P, Teruel L, Mestres N, Perez-Murano F, Garcia H, Godignon P, Corma A, Lora-Tamayo E (2008) CVD oriented growth of carbon nanotubes using AlPO4-5 and L type zeolites. Microelectron Eng 85(5–6):1202–1205

    Article  CAS  Google Scholar 

  • Moreno JMC, Swamy SS, Fujino T, Yoshimura M (2000) Carbon nanocells and nanotubes grown in hydrothermal fluids. Chem Phys Lett 329(3–4):317–322

    Article  Google Scholar 

  • Mu W, Kwak E-H, Chen B, Huang S, Edwards M, Fu Y, Jeppson K, Teo K, Jeong G-H, Liu J (2016) Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes. Electron Mater Lett 12(3):329–337

    Article  CAS  Google Scholar 

  • Murakami Y, Chiashi S, Miyauchi Y, Hu M, Ogura M, Okubo T, Maruyama S (2004) Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem Phys Lett 385(3–4):298–303

    Article  CAS  Google Scholar 

  • Nagaraju N, Fonseca A, Konya Z, Nagy JB (2002) Alumina and silica supported metal catalysts for the production of carbon nanotubes. J Mol Catal A Chem 181(1–2):57–62

    Article  CAS  Google Scholar 

  • Novoselova I, Oliinyk N, Voronina A, Volkov S (2006) Electrolytical generation of nano-sized carbon frame structures in molten salts on metallic cathodes. EUCHEM conference on molten salts and ionic liquids, Tunisia

    Google Scholar 

  • Novoselova I, Oliinyk N, Volkov S, Konchits A, Yanchuk I, Yefanov V, Kolesnik S, Karpets M (2008) Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization. Phys E 40(7):2231–2237

    Article  CAS  Google Scholar 

  • Okai M, Muneyoshi T, Yaguchi T, Sasaki S (2000) Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition. Appl Phys Lett 77(21):3468–3470

    Article  CAS  Google Scholar 

  • Ono T, Miyashita H, Esashi M (2004) Nanomechanical structure with integrated carbon nanotube. Jpn J Appl Phys 43(2R):855

    Article  CAS  Google Scholar 

  • Popov VN (2004) Carbon nanotubes: properties and application. Mater Sci Eng R Rep 43(3):61–102

    Article  Google Scholar 

  • Rathinavel S, Priyadharshini K, Panda D (2021) A review on carbon nanotube: an overview of synthesis, properties, functionalization, characterization, and the application. Mater Sci Eng B 268:115095

    Article  CAS  Google Scholar 

  • Razali MH, Ahmad A, Azaman MA, Amin KAM (2016) Physicochemical properties of carbon nanotubes (CNT’s) synthesized at low temperature using simple hydrothermal method. Int J Appl Chem 12(3):273–280

    Google Scholar 

  • Saeed M, Alshammari Y, Majeed SA, Al-Nasrallah E (2020) Chemical vapour deposition of graphene – synthesis, characterisation, and applications: a review. Molecules 25:3856

    Article  CAS  Google Scholar 

  • See CH, Harris AT (2007) A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind Eng Chem Res 46(4):997–1012

    Article  CAS  Google Scholar 

  • Sengupta J (2018) Carbon nanotube fabrication at industrial scale: opportunities and challenges. In: Handbook of nanomaterials for industrial applications. Elsevier, Amsterdam, pp 172–194

    Chapter  Google Scholar 

  • Soni SK, Thomas B, Kar VR (2020) A comprehensive review on CNTs and CNT-reinforced composites: syntheses, characteristics and applications. Mater Today Commun 25:101546

    Google Scholar 

  • Stevens MG, Subramoney S, Foley HC (1998) Spontaneous formation of carbon nanotubes and polyhedra from cesium and amorphous carbon. Chem Phys Lett 292(3):352–356

    Article  CAS  Google Scholar 

  • Sun L, Yuan G, Gao L, Yang J, Chhowalla M, Gharahcheshmeh MH, Gleason KK, Choi YS, Hong BH, Liu Z (2021) Chemical vapour deposition. Nature Rev Methods Primers 1(1):1–20

    Article  Google Scholar 

  • Tanemura M, Iwata K, Takahashi K, Fujimoto Y, Okuyama F, Sugie H, Filip V (2001) Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: optimization of growth parameters. J Appl Phys 90(3):1529–1533

    Article  CAS  Google Scholar 

  • Tang J, Fan G, Li Z, Li X, Xu R, Li Y et al (2013) Synthesis of carbon nanotube/aluminium composite powders by polymer pyrolysis chemical vapor deposition. Carbon 55:202–208

    Article  CAS  Google Scholar 

  • Tripathi N, Mishra P, Joshi B, Islam S (2014) Catalyst free, excellent quality and narrow diameter of CNT growth on Al2O3 by a thermal CVD technique. Phys E 62:43–47

    Article  CAS  Google Scholar 

  • Vander Wal RL (2000) Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes. Chem Phys Lett 324(1–3):217–223

    CAS  Google Scholar 

  • Venegoni D, Serp P, Feurer R, Kihn Y, Vahlas C, Kalck P (2002) Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40(10):1799–1807

    Article  CAS  Google Scholar 

  • Wu F, Wang C, Hu H-Y, Pan M, Li H-F, Xie N, Zeng Z, Deng S, Wu MH, Vinodgopal K (2019) One-step synthesis of hierarchical metal oxide nanosheet/carbon nanotube composites by chemical vapor deposition. J Mater Sci 54(2):1291–1303

    Article  CAS  Google Scholar 

  • Yamagiwa K, Iwao Y, Mikami M, Takeuchi T, Saito M, Kuwano J (2007) Liquid-phase synthesis of carbon nanotubes from alcohols. Key Eng Mater 350:19–22. Trans Tech Publ

    Article  CAS  Google Scholar 

  • Yamagiwa K, Ayato Y, Kuwano J (2016) Liquid-phase synthesis of highly aligned carbon nanotubes on preheated stainless steel substrates. Carbon 98:225–231

    Article  CAS  Google Scholar 

  • Yudasaka M, Ichihashi T, Komatsu T, Iijima S (1999) Single-wall carbon nanotubes formed by a single laser-beam pulse. Chem Phys Lett 299(1):91–96

    Article  CAS  Google Scholar 

  • Zeng X, Sun X, Cheng G, Yan X, Xu X (2002) Production of multi-wall carbon nanotubes on a large scale. Phys B Condens Matter 323(1–4):330–332

    Article  CAS  Google Scholar 

  • Zhang Y, Gamo M, Xiao C, Ando T (2002) Liquid phase synthesis of carbon nanotubes. Phys B Condens Matter 323(1–4):293–295

    Article  CAS  Google Scholar 

  • Zhang G, Mann D, Zhang L, Javey A, Li Y, Yenilmez E, Wang Q, McVittie JP, Nishi Y, Gibbons J (2005) Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc Natl Acad Sci 102(45):16141–16145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atike Ince Yardimci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yardimci, A.I., Yagmurcukardes, N. (2022). Synthesis Methods of Carbon Nanotubes. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-030-91346-5_52

Download citation

Publish with us

Policies and ethics