Skip to main content
Log in

Ultra low frequency waves impact on radiation belt energetic particles

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

One of the most fundamental important issues in the space physics is to understand how solar wind energy transports into the inner magnetosphere. Ultra low frequency (ULF) wave in the magnetosphere and its impact on energetic particles, such as the wave-particle resonance, modulation, and particle acceleration, are extremely important topics in the Earth’s radiation belt dynamics and solar wind—magnetospheric coupling. In this review, we briefly introduce the recent advances on ULF waves study. Further, we will explore the density structures and ion compositions around the plasmaspheric boundary layer (PBL) and discuss its possible relation to the ULF waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allan W, Poulter M E. ULF waves—their relationship to the structure of the Earth’s magnetosphere. Rep Prog Phys, 1992, 55: 533–598

    Article  Google Scholar 

  2. Zhu X, Kivelson M. Compressional ULF waves in the outer magnetosphere, 1. Statistical Study. J Geophys Res, 1991, 96: 19451–19467

    Article  Google Scholar 

  3. Lee D H, Lysak R. Magnetospheric ULF wave coupling in the dipole model: the impulsive excitation. J Geophys Res, 1989, 94: 17097–17103

    Article  Google Scholar 

  4. Yang B, Fu S Y, Zong Q G, et al. Numerical study on ULF waves in a dipole field excited by sudden impulse. Sci Chin Ser E-Tech Sci, 2008, 51(10): 1665–1676

    Article  MATH  Google Scholar 

  5. Zhang X Y, Zong Q G, Yang B, et al. Numerical simulation of magnetospheric ULF waves excited by positive and negative impulses of solar wind dynamic pressure. Sci Chin Ser E-Tech Sci, 2009, 52(10): 2886–2894

    Article  MATH  Google Scholar 

  6. Zong Q G, Wang Y F, Zhou X Z, et al. Energetic electrons response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res, 2009, 114: 2009JA014393

    Google Scholar 

  7. Southwood D J, Kivelson M G. Charged particle behavior in low-frequency geomagnetic pulsations: 1. Transverse waves. J Geophys Res, 1981, 86: 5643–5655

    Article  Google Scholar 

  8. Southwood D J, Kivelson M G. Charged particle behavior in low-frequency geomagnetic pulsations: 2. Graphical approach. J Geophys Res, 1982, 87: 1707–1710

    Article  Google Scholar 

  9. Lanzerotti L J, Southwood D J. Hydromagnetic Waves, in Solar System Plasma Physics. Volume 3. Amsterdam: North-Holland Publishing Co., 1979. 109–135

    Google Scholar 

  10. Xiao F, Shen C, Wang Y, et al. Energetic electron distributions fitted with a relativistic kappa-type function at geosynchronous orbit. J Geophys Res, 2007, 113: A05203, doi:10.1029/2007JA012903

    Article  Google Scholar 

  11. Xiao F, Zhou Q, Zheng H, et al. Whistler instability threshold condition of energetic electrons by kappa distribution in space plasmas. J Geophys Res, 2006, 111: A08208, doi:10.1029/2006JA011612

    Article  Google Scholar 

  12. Xiao F, Zhou Q, He H, et al. Electromagnetic ion cyclotron waves instability threshold condition of suprathermal protons by kappa distribution. J Geophys Res, 2006, 112: A07219, doi:10.1029/2006JA012050

    Article  Google Scholar 

  13. Xiao F, Su Z, Zheng H, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process. J Geophys Res, 2008, 114: A03201, doi:10.1029/2008JA013580

    Article  Google Scholar 

  14. Xiao F, He H, Zhou Q, et al. Relativistic diffusion coefficients for superluminous (auroral kilometric radiation) wave modes in space plasmas. J Geophys Res, 2006, 111: A11201, doi:10.1029/2006JA011865

    Article  Google Scholar 

  15. Xiao F, Chen L, Zheng H, et al. A parametric ray tracing study of superluminous auroral kilometric radiation wave modes. J Geophys Res, 2006, 112: A10214, doi:10.1029/2006JA012178

    Article  Google Scholar 

  16. Brown W L, Cahill L J, Davis L R, et al. Acceleration of trapped particles during a magnetic storm on April 18, 1965. J Geophys Res, 1968, 73: 153–161

    Article  Google Scholar 

  17. Xie L, Zhang X J, Pu Z Y, et al. Ultra low frequency waves observed by Double Star TC-1 in the plasmasphere boundary layer. Sci China Ser E-Tech Sci, 2008, 51(10): 1685–1694

    Article  Google Scholar 

  18. Wang Y F, Fu S Y, Zong Q G, et al. Multi-spacecraft observations of ULF waves during the recovery phase of magnetic storm on October 30, 2003. Sci China Ser E-Tech Sci, 2008, 51(10): 1772–1785

    Article  Google Scholar 

  19. Baker D N, Kanekal S G, Li X, et al. An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’ solar storm in 2003. Nature, 2004, 432: 878–881

    Article  Google Scholar 

  20. Horne R B. Wave acceleration of electrons in the Van Allen radiation belts. Nature, 2005, 437: 227–230

    Article  Google Scholar 

  21. Xiao F, Zong Q G, Chen L X. Pitch-angle distribution evolution of energetic electrons in the inner radiation belt and slot region during the 2003 Halloween storm. J Geophys Res, 2009, 114: A01215

    Article  Google Scholar 

  22. Hudson M, Kress B, Mueller H, et al. Relationship of the Van Allen radiation belts to solar wind drivers. J Atmos Solar-Terr Phys, 2008, 70: 708–729

    Article  Google Scholar 

  23. Horne R B. Timescale for radiation belt electron acceleration by whistler mode chorus waves. J Geophys Res, 2005, 110: A03225

    Article  Google Scholar 

  24. Blake J B, Kolasinski W A, Fillius R W, et al. Injection of electrons and protons with energies of tens of MeV into L less than 3 on 24 March 1991. Geophys Res Lett, 1992, 19: 821–824

    Article  Google Scholar 

  25. Chen Y, Reeves G D, Friedel R H W. The energization of relativistic electrons in the outer Van Allen radiation belt. Nature Phys, 2007, 3: 614–617

    Article  Google Scholar 

  26. Claudepierre S G, Elkington S R, Wiltberger M. Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity shear at the magnetopause. J Geophys Res, 2008, 113: 5218

    Article  Google Scholar 

  27. Zong Q G, Wang Y F, Yang B, et al. Recent progress on ULF wave and its interactions with energetic particles in the inner magnetosphere. Sci China Ser E-Tech Sci, 2008, 51(10): 1620–1625

    Article  Google Scholar 

  28. Elkington S R, Hudson M K, Chan A A. Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field. J Geophys Res, 2003, 108: 111

    Article  Google Scholar 

  29. Loto’aniu T M, Mann I R, Ozeke L G, et al. Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms. J Geophys Res, 2006, 111: 4218

    Article  Google Scholar 

  30. Zong Q G. Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophys Res Lett, 2007, 34: L12105

    Article  Google Scholar 

  31. Tan L C, Fung S F, Shao X. Observation of magnetospheric relativistic electrons accelerated by Pc-5 ULF waves. Geophys Res Lett, 2004, 31: 14802

    Article  Google Scholar 

  32. Mathie R A, Mann I R. On the solar wind control of Pc5 ULF pulsation power at mid-latitudes: Implications for MeV electron acceleration in the outer radiation belt. J Geophys Res, 2001, 106: 29783

    Article  Google Scholar 

  33. O’Brien T P, Lorentzen K R, Mann I R, et al. Energization of relativistic electrons in the presence of ULF power and MeV microbursts: evidence for dual ULF and VLF acceleration. J Geophys Res, 2003, 108: 1329

    Article  Google Scholar 

  34. Elkington S R, Hudson M K, Chan A A. Acceleration of relativistic electrons via drift-resonant interaction with toroidal-mode Pc-5 ULF oscillation. Geophys Res Lett, 1999, 26: 3273–3276

    Article  Google Scholar 

  35. Zou H, Xiao Z, Hao Y Q, et al. Analysis of the observation of particle detector inside ‘CBERS-1’ satellite under solar quiet conditions. Sci China Ser E-Tech Sci, 2006, 49(3): 342–357

    Article  Google Scholar 

  36. Hao Y Q, Xiao Z, Zou H, et al. Energetic particle radiations measured by particle detector on board CBERS-1 satellite. Chin Sci Bull, 2007, 52(5): 665–670

    Article  Google Scholar 

  37. O’Brien T P, Moldwin M B. Empirical plasmapause models from magnetic indices. Geophys Res Lett, 2003, 30(4): 1152

    Article  Google Scholar 

  38. Goldstein J, Sandel B R, Forrester W T, et al. Global plasmasphere evolution 22–23 April 2001. J Geophys Res, 2005, 110: A12218

    Article  Google Scholar 

  39. Li X, Baker D N, O’Brien T P, et al. Correlation between the inner edge of outer radiation belt electrons and the innermost plasmapause location. Geophys Res Lett, 2006, 33: L14107

    Article  Google Scholar 

  40. Meredith N P, Horne R B, Thorne R M, et al. Substorm dependence of plasmaspheric hiss. J Geophys Res, 2004, 109: A06209

    Article  Google Scholar 

  41. Denton R E, Menietti J D, Goldstein J, et al. Electron density in the magnetosphere. J Geophys Res, 2004, 109(A9): A09215

    Article  Google Scholar 

  42. Denton R E, Takahashi K, Anderson R R, et al. Magnetospheric toroidal Alfvń wave harmonics and the field line distribution of mass density. J Geophys Res, 2004, 109(A6): A06202

    Article  Google Scholar 

  43. Denton R E, Takahashi K, Galkin I A, et al. Distribution of density along magnetospheric field lines. J Geophys Res, 2006, 111: A04213

    Article  Google Scholar 

  44. Menietti J D, Burch J L, Gallagher D L. Statistical study of ion flows in the dayside and nightside plasmasphere. Planet Space Sci, 1988, 36(7): 693–702

    Article  Google Scholar 

  45. Horwitz J L, Comfort R H, Chappell C R. Thermal ion composition measurements of the formation of the new outer plasmasphere and double plasmapause during storm recovery phase. Geophys Res Lett, 1984, 11: 701

    Article  Google Scholar 

  46. Moldwin M B. Outer plasmaspheric plasma properties: What we know from satellite data. Space Sci Rev, 1997, 80: 181

    Article  Google Scholar 

  47. Lemaire J, Gringauz K I. The Earth’s Plasmasphere. Cambridge: Cambridge Univ. Press, 1998

    Google Scholar 

  48. Carpenter D L, Lemaire J L. Erosion and recovery of the plasmasphere in the plasmapause region. Space Sci Rev, 1997, 80: 153–179

    Article  Google Scholar 

  49. Carpenter D L, Anderson R R. An ISEE/whistler model of equatorial electron density in the magnetosphere. J Geophys Res, 1992, 97: 1097–1108

    Article  Google Scholar 

  50. Carpenter D L, Lemaire J. The plasmasphere boundary layer. Ann Geophys, 2004, 22: 4291–4298

    Article  Google Scholar 

  51. Binsack J H. Plasmapause observations with the M.I.T. experiment on IMP 2. J Geophys Res, 1967, 72: 5231–5237

    Article  Google Scholar 

  52. Moldwin M B, Downward L, Rassoul H K, et al. A new model of the location of the plasmapause: CRRES results. J Geophys Res, 2002, 107(A11): 1339

    Article  Google Scholar 

  53. Larsen B A, Klumpar D M, Gurgiolo C. Correlation between plasmapause position and solar wind parameters. J Atmos Sol Terr Phys, 2007, 69(3): 334–340

    Article  Google Scholar 

  54. Nagai T, Horwitz J, Anderson R, et al. Structure of the plasmapause from ISEE 1 low-energy ion and plasma wave observations. J Geophys Res, 1985, 90(A7): 6622–6626

    Article  Google Scholar 

  55. Bame S J, Asbridge J R, Feldman W C, et al. Solar wind heavy ion abundances. Sol Phys, 1975, 43: 463–473

    Article  Google Scholar 

  56. Johnson R G. Energetic ion composition in the earth’s magnetosphere. Rev Geophys Space Phys, 1979, 17: 696–705

    Article  Google Scholar 

  57. Dessler A J, Michel F C. Plasma in the geomagnetic tail. J Geophys Res, 1966, 71: 1421

    Google Scholar 

  58. Nishida A. Formation of plasmapause, or magnetospheric plasma knee, by the combined action of magnetospheric convection and plasma escape from the tail. J Geophys Res, 1966, 71(23): 5669–5679

    Google Scholar 

  59. Jeans J H. The Dynamical Theory of Gases. 4th ed. New York: Cambridge Univ Press, 1925

    MATH  Google Scholar 

  60. Axford W I. The polar wind and the terrestrial helium budget. J Geophys Res, 1968, 73: 6855–6859

    Article  Google Scholar 

  61. Banks P M, Holzer T E. Features of plasma transport in the upper atmosphere. J Geophys Res, 1969, 74: 6304

    Article  Google Scholar 

  62. Shelley E G, Johnson R G, Sharp R D. Satellite observations of energetic heavy ions during a geomagnetic storm. J Geophys Res, 1972, 77: 6104

    Article  Google Scholar 

  63. Yau A W, Beckwith P H, Peterson W K, et al. Long-term (solar cycle) and seasonal variations of upflowing ionospheric ion events at DE-1 altitudes. J Geophys Res, 1985, 90: 6395–6407

    Article  Google Scholar 

  64. Moore T E. Modulation of terrestrial ion escape flux composition (by low-altitude acceleration and charge exchange chemistry). J Geophys Res, 1980, 85: 2011–2016

    Article  Google Scholar 

  65. Lockwood M. Thermospheric control of the auroral source of O+ ions for the magnetosphere. J Geophys Res, 1984, 89: 301–315

    Article  Google Scholar 

  66. Barakat A R, Schunk R W. O+ ions in the polar wind. J Geophys Res, 1983, 88: 7887

    Article  Google Scholar 

  67. Horwitz J L, Moore T E. Four contemporary issues concerning ionospheric plasmaflow to the magnetosphere. Space Sci Rev, 1997, 80: 49–76

    Article  Google Scholar 

  68. Fuselier S, Collin H L, Ghielmetti A G, et al. Localized ion outflow in response to a solar wind pressure pulse. J Geophys Res, 2002, 107(A8): 1203

    Article  Google Scholar 

  69. Echer E, Korth A, Zong Q G, et al. Cluster observations of O+ escape in the magnetotail due to shock compression effects during the initial phase of the magnetic storm on 17 August 2001. J Geophys Res, 2008, 113: A05209

    Article  Google Scholar 

  70. Horne R B, Thorne R M. Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys Res Lett, 1998, 25: 3011

    Article  Google Scholar 

  71. Summers D, Ma C, Mukai T. Competition between acceleration and loss mechanisms of relativistic electrons during geomagnetic storms. J Geophys Res, 2004, 109(A4): A04221

    Article  Google Scholar 

  72. Summers D, Ni B, Meredith N P. Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory. J Geophys Res, 2007, 112(A4): A04206

    Article  Google Scholar 

  73. Summers D, Ni B, Meredith N P, Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. J Geophys Res, 2007, 112(A4): A04207

    Article  Google Scholar 

  74. Horne R B, R. Thorne M. Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus. Geophys Res Lett, 2003, 30(10): 1527

    Article  Google Scholar 

  75. Li X, Baker D N, Temerin M, et al. Are energetic electrons in the solar wind the source of the outer radiation belt? J Geophys Res, 1997, 24: 923

    Google Scholar 

  76. Spasojevic M, Frey H U, Thomsen M F, et al. The link between a detached subauroral proton arc and a plasmaspheric plume. Geophys Res Lett, 2004, 31: L04803

    Article  Google Scholar 

  77. Brautigam D H, Albert J M. Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990 magnetic storm. J Geophys Res, 2000, 105: 291–309

    Article  Google Scholar 

  78. Green J C, Kivelson M G. Relativistic electrons in the outer radiation belt: Differentiating between acceleration mechanisms. J Geophys Res, 2004, 109: A03213

    Article  Google Scholar 

  79. Singh N, Horwitz J L. Plasmasphere refilling: Recent observations and modeling. J Geophys Res, 1992, 97: 1049–1079

    Article  Google Scholar 

  80. Fraser B J, Horwitz J L, Slavin J A, et al. Heavy ion mass loading of the geomagnetic field near the plasmapause and ULF wave implications. Geophys Res Lett, 2005, 32: L04102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiuGang Zong.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 40831061)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zong, Q., Hao, Y. & Wang, Y. Ultra low frequency waves impact on radiation belt energetic particles. Sci. China Ser. E-Technol. Sci. 52, 3698–3708 (2009). https://doi.org/10.1007/s11431-009-0390-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-0390-z

Keywords

Navigation