Skip to main content
Log in

Solar wind entry via flux tube into magnetosphere observed by Cluster measurements at dayside magnetopause during southward IMF

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

By analyzing hot ion and electron parameters together with magnetic field measurements from Cluster, an event of magnetopause crossing of the spacecraft has been investigated. At the latitude of about 40° and magnetic local time (MLT) of 13:20 during the southward interplanetary magnetic field (IMF), a transition layer was observed, with the magnetospheric field configuration and cold dense plasma features of the magnetosheath. The particle energy-time spectrograms inside the layer were similar to but still a little different from those in the magnetosheath, obviously indicating the solar wind entry into the magnetosphere. The direction and magnitude of the accelerated ion flow implied that reconnection might possibly cause such a solar wind entry phenomenon. The bipolar signature of the normal magnetic component B N in magnetopause coordinates further supported happening of reconnection there. The solar wind plasma flowed toward the magnetopause and entered the magnetosphere along the reconnected flux tube. The magnetospheric branch of the reconnected flux tube was still inside the magnetosphere after reconnection and supplied the path for the solar wind entry into the dayside magnetosphere. The case analysis gives observational evidence and more details of how the reconnection process at the dayside low latitude magnetopause caused the solar wind entry into the magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnstone A D, Burge S, Carter P J, et al. PEACE: a plasma electron and current experiment. Space Sci Rev, 1997, 79(1–2): 351

    Article  Google Scholar 

  2. Akasofu S I. Energy coupling between the solar wind and the magnetosphere. Space Sci Rev, 1981, 28(1): 121–190

    Google Scholar 

  3. Hasegawa H, Fujimoto M, Phan T D, et al. Transport of solar wind into magnetosphere through rolled-up Kelvin-Helmholtz vortices. Lett Nature, 2004, 430(6): 755–758

    Article  Google Scholar 

  4. Baumjohann W, Paschmann G. Solar wind magnetosphere coupling: Process and observations. Phys Scripta, 1987, 18(1): 61

    Article  Google Scholar 

  5. Burton R K, McPherron R L, Russell C T. An empirical relationship between interplanetary conditions and Dst. J Geophys Res, 1975, 80(31): 4204

    Article  Google Scholar 

  6. Fujomoto M, Terasawa T. Anomalous ion mixing within an MHD scale Kelvin-Helmholtz votex. J Geophys Res, 1995, 100(A7): 12025–12033

    Article  Google Scholar 

  7. Fujimoto M, Nishida A, Mukai T, et al. Plasma entry from the flanks of the near-Earth magnetotail: GEOTAIL observations in the dawn-side LLBL and the plasma sheet. J Geomag Geoelectr, 1996, 48(6): 711–727

    Google Scholar 

  8. Gonzalez W D. A unified view of solar wind-magnetospheric coupling functions. Planet Space Sci, 1990, 38(5): 627

    Article  Google Scholar 

  9. Perreault P, Akasofu S I. A study of geomagnetic storms. Geophys J R Astron Soc, 1978, 54(4): 547

    Google Scholar 

  10. Treumann R A, LaBelle J, Bauer T M. Diffussion processes: an observational perspective. In: Song P, Sonnerup B U O, Thomas M F, eds. Physics of the Magnetopause. Washington D C: American Geophysical Union, 1995. 331

    Google Scholar 

  11. Yeh T, Akasofu S I. A theoretic derived energy coupling function for the magnetosphere. Space Sci Rev, 1981, 29(4): 425–429

    Article  Google Scholar 

  12. Dungey J W. Interplanetary magnetic filed and auroral zones. Phys Rev Lett, 1961, 6(2): 47

    Article  Google Scholar 

  13. Hasegawa H, Fujimoto M, Saito Y, et al. Dense and stagnant ions in the low-latitude-boundary-region under northward interplanetary magnetic field. Geophys Res Lett, 2004, 31(6): L06802

    Google Scholar 

  14. Reiff P H, Hill T W, Burch J L. Solar wind plasma injection at the dayside magnetospheric cusp. J Geophys Res, 1977, 82(3): 479–491

    Article  Google Scholar 

  15. Song P, Russell C T. Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field. J Geophys Res, 1992, 97(A2): 1411–1420

    Article  Google Scholar 

  16. Axford W I, Hines C O. A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can J Phys, 1961, 39(10): 1433

    MathSciNet  Google Scholar 

  17. Mishin V V. Velocity boundary layers in the distant geotail and the Kelvin-Helmholtz instability. Planet Space Sci, 2004, 53(1–3): 157–160

    Google Scholar 

  18. LaBelle J, Treumann R A. Plasma waves at the dayside magnetopause. Space Sci Rev, 1988, 47(1–2): 175

    Google Scholar 

  19. Manuel J R, Samson J C. The spatial development of the low-latitude boundary layer. J Geophys Res, 1993, 98(A10): 17367–17385

    Article  Google Scholar 

  20. Winske D, Thomas V A, Omidi N. Diffussion at the magnetopause: a theoretical perspective. In: Song P, Sonnerup B U O, Thomas M F, eds. Physics of the Magnetopause. Washington D C: American Geophysical Union, 1995. 321

    Google Scholar 

  21. Chandler M O, Avanov L A. Observations at low latitudes of magnetic merging signatures within a flux transfer event during a northward interplanetary magnetic field. J Geophys Res, 2003, 108(A10): 1358. doi:10.1029/2003JA009852

    Article  Google Scholar 

  22. Milan S E, Provan G, Hubert B. Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside renconnction rates. J Geophys Res, 2007, 112(A1): A01209. doi: 10.1029/2006JA011642

  23. Yan G Q, Shen C, Liu Z X, et al. Solar wind transport into magnetosphere caused by magnetic reconnection at high latitude magnetopause during northward IMF: Cluster-DSP conjunction observations. Sci China Ser E-Tech Sci, 2008, 51(10): 1677–1684

    Article  Google Scholar 

  24. Haerendel G, Paschmann G. Entry of solar wind plasma into the magnetosphere. In: Hultqvist B, Stenflo L, eds. Physics of the Hot Plasma in the Magnetosphere. New York: Plenum Press, 1975. 23

    Google Scholar 

  25. Paschmann G, Haerendel G, Sckopke N, et al. Plasma and magnetic field characteristics of the distant polar cusp near local noon: The entry layer. J Geophys Res, 1976, 81(16): 2883

    Article  Google Scholar 

  26. Escoubet C P. The Cluster mission. Ann Geophys, 2001, 19(10–12): 1197–1200

    Google Scholar 

  27. Rème H, Aoustin C, Bosqued J M, et al. First multispacecraft ion measurement in and near the Earth’s magnetosphere with the identical Cluster ion spectro-metry (CIS) experiment. Ann Geophys, 2001, 19(10–12): 1303–1354

    Google Scholar 

  28. Balogh A, Carr C M, Acuna M H, et al. The Cluster magnetic field investigation: overview of in-flight performance and initial results. Ann Geophys, 2001, 19(10–12): 1207–1217

    Google Scholar 

  29. Sonnerup B U O, Cahill L J. Magnetopause structure and attitude from Explorer 12 observations. J Geophys Res, 1967, 72(1): 171–183

    Article  Google Scholar 

  30. Sonnerup B U O, Cahill L J. Theory of the magnetopause current layer. J Geophys Res, 1968, 73(5): 1757–1770

    Article  Google Scholar 

  31. Phan T D, Paschmann G, Baumjohann W, et al. The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations. J Geophys Res, 1994, 99(A1): 121–141

    Article  Google Scholar 

  32. Dunlop M W, Taylor M G G T, Davies J A, et al. Coordinated Cluster/Double Star observations of dayside reconnection signatures. Ann Geophys, 2005, 23(11): 2867–2875

    Article  Google Scholar 

  33. Lee L C, Fu Z F. A theory of magnetic flux transfer at the earth’s magnetopause. Geophys Res Lett, 1985, 12(2): 105–108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangQing Yan.

Additional information

Supported by the Ministry of Science and Technology of China (Grant No. 2006CB806305), the National Natural Science Foundation of China (Grant Nos. 40621003, 40620130094, 40674094 and 40731054), the Hundred Talents Program of the CAS, and the Specialized Research Fund for State Key Laboratories

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, G., Liu, Z., Shen, C. et al. Solar wind entry via flux tube into magnetosphere observed by Cluster measurements at dayside magnetopause during southward IMF. Sci. China Ser. E-Technol. Sci. 52, 2104–2111 (2009). https://doi.org/10.1007/s11431-009-0088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-009-0088-2

Keywords

Navigation