Skip to main content
Log in

Solar wind transport into magnetosphere caused by magnetic reconnection at high latitude magnetopause during northward IMF: Cluster-DSP conjunction observations

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

An event of Cluster-Double Star conjunction observations of magnetic reconnection at high latitude magnetopause nightside of both cusps and solar wind transport into magnetosphere caused by such reconnection process has been investigated. During northward IMF, Cluster/SC1 observed accelerated flows and ion heating associated with magnetic reconnection at high latitude magnetopause nightside of southern cusp. And Double Star observed cold dense solar wind plasma transported into dayside magnetosphere. The analysis on such conjunction observations shows that: (1) during northward IMF, magnetic reconnection occurs at high latitude nightside of southern cusp, accompanied by accelerated flows that are observed by Cluster/SC1; (2) the direction of the accelerated flows, with its sunward component V x , dawnward component V y , northward component V z , is quite consistent with the theoretical anticipation under the condition of northward IMF with dawnward component B y ; (3) reconnection can heat plasma more in parallel direction than in perpendicular direction, to a level of about 4 keV; (4) with reconnection taking place at high latitude magnetopause nightside of the southern cusp, TC-1 observed cold and dense plasma transported into magnetosphere; (5) by reconnection at high latitude magnetopause nightside of both cusps, solar wind flux tube can be captured by magnetosphere and pulled into dayside magnetosphere. This event presents further observational evidence for magnetic reconnection at high latitude magnetopause nightside of both cusps as an important mechanism of solar wind transport into magnetosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akasofu S I. Energy coupling between the solar wind and the magnetosphere. Space Sci Rev, 1981, 28: 121–190

    Article  Google Scholar 

  2. Hasegawa H, Fujimoto M, Phan T D, et al. Transport of solar wind into magnetosphere through rolled-up Kelvin-Helmholtz vortices. Lett Nature, 2004, 430: 755–758

    Article  Google Scholar 

  3. Axford W I, Hines C O. A unifying theory of high-latitude geophysical phenomena and geomagnetic storms. Can J Phys, 1961, 39: 1433

    MathSciNet  Google Scholar 

  4. Fujomoto M, Terasawa T. Anomalous ion mixing within an MHD scale Kelvin-Helmholtz votex. J Geophys Res, 1995, 100: 12025–12033

    Article  Google Scholar 

  5. Mishin V V. Velocity boundary layers in the distant geotail and the Kelvin-Helmholtz instability. Planet Space Sci, 2004, 53: 157–160

    Article  Google Scholar 

  6. LaBelle J, Treumann R A. Plasma waves at the dayside magnetopause. Space Sci Rev, 1988, 47: 175

    Article  Google Scholar 

  7. Manuel J R, Samsion J C. The spatial development of the low-latitude boundary layer. J Geophys Res, 1993, 98,A10: 17367–17385

    Article  Google Scholar 

  8. Treumann R A, LaBelle J, Bauer T M. Diffussion Processes: An Observational Perspective. In: Song P, Sonnerup B U O, Thomas M F, eds. Physics of the Magnetopause. Washington D C: American Geophysical Union, 1995. 331

    Google Scholar 

  9. Winske D, Thomas V A, Omidi N. Diffussion at the Magnetopause: A Theoretical Perspective. In: Song P, Sonnerup B U O, Thomas M F, eds. Physics of the Magnetopause. Washington D C: American Geophysical Union, 1995. 321

    Google Scholar 

  10. Biernat H K. Coupling processes at the magnetopause. In: Biernat H K, Bauer S J, Heinder M, eds. Theoretical problems in space and fusion plasmas. Wien: Oesterreichischen Akademie der Wissenschaften, 1991. 105

    Google Scholar 

  11. Dungey J W. Interplanetary magnetic filed and auroral zones. Phys Rev Lett, 1961, 6: 47

    Article  Google Scholar 

  12. Huba J D. Impulsive plasmoid penertration of a tangential discontinuity: Two-dimensional ideal and Hall magnetohydrodynamics. J Geophys Res, 1996, 101(A11): 24855–24868

    Article  Google Scholar 

  13. Lemaire J. Impulsive penetration of filamentary plasma elements into magnetospheres of the Earth and Jupiter. Planet Space Sci, 1977, 25: 887

    Article  Google Scholar 

  14. Lemaire J, Roth M. Penetration of solar wind plasma elements into magnetoshere. J Atmos Terr Phys, 1978, 40: 331

    Article  Google Scholar 

  15. Reiff P H, Hill T W, Burch J L. Solar wind plasma injection at the dayside magnetospheric cusp. J Geophys Res, 1977, 82: 479–491

    Article  Google Scholar 

  16. Roth M. Impulsive Transport of Solar wind into the magnetosphere. In: Song P, Sonnerup B U O, Thomas M F, eds. Physics of the Magnetopause. Washington D C: American Geophysical Union, 1995. 343

    Google Scholar 

  17. Song P, Russell C T. Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field. J Geophys Res, 1992, 97: 1411–1420

    Article  Google Scholar 

  18. Carr C, Brown P, Zhang T L, et al. The Double Star magnetic field investigation: instrument design, performance and highlights of the first year’s observation. Ann Geophysicae, 2005, 23: 2713–2732

    Google Scholar 

  19. Avanov L A, Smirnov V N, Waite Jr J H, et al. High latitude magnetic reconnection in sub-Alfvenic flow: Interball tail observations on May 29, 1996. J Geophys Res, 2001, 106: 29491

    Google Scholar 

  20. Fuselier S A, Petrinec S M, Trattner K J. Stability of the high-latitude reconnection site for steady northward IMF. Geophys Res Lett, 2000, 27: 473

    Article  Google Scholar 

  21. Fuselier S A, Trattner K J, Petrinec S M. Cusp observations of high-and low-latitude reconnection for northward interplanetary magnetic field. J Geophys Res, 2000, 105: 253

    Article  Google Scholar 

  22. Gosling J T, Thomsen M F, Bame S J, et al. Observations of reconnection of interplanetary and lobe magnetic field lines at the high-latitude magnetopause. J Geophys Res, 1991, 96: 14097

    Google Scholar 

  23. Gosling J T, Thomsen M F, Bame S J, et al. Observations of reconnection at the lobe magnetopause. J Geophys Res, 1991, 101: 24765

    Google Scholar 

  24. Kessel R L, Chen S H, Green J L, et al. Evidence of high-latitude reconnection during northward IMF: Hawkeye observations. Geophys Res Lett, 1996, 23: 583

    Article  Google Scholar 

  25. Matsuoka A, Tsuruda K, Hayakawa H, et al. Electric field structure and ion precipitation in the polar region associated with northward interplanetary magnetic field. J Geophys Res, 1996, 101: 10711

    Google Scholar 

  26. Terasawa T, Fujimoto M, Mukai T, et al. Solar wind control of density and temperature in the near-Earth plasma sheet: WlND-GEOTAIL collaboration. Geophys Res Lett, 1997, 24: 935–938

    Article  Google Scholar 

  27. Fujimoto M, Terasawa T, Mukai T. The cold-dense plasma sheet: A GEOTAIL perspective. Space Sci Rev, 1997, 80: 325–339

    Article  Google Scholar 

  28. Tsyganenko N A, Mukai T. Tail plasma sheet models derived from Geotail particle data. J Geophys Res, 2003, 108(A3): 1136

    Article  Google Scholar 

  29. Yan G Q, Shen C, Liu Z X, et al. A Statistical Study on Correlations between Plasma Sheet and Solar Wind Based on DSP Explorations. Ann Geophysicae, 2005, 23: 2961–2966

    Google Scholar 

  30. Phan T D, Frey H, Frey S, et al. Simultaneous Cluster and IMAGE observations of cusp reconnection and auroral proton spot for northward IMF. Geophys Res Lett, 2003, 30: 1059

    Article  Google Scholar 

  31. Escoubet C P. The Cluster mission. Ann Geophyicae, 2001, 19: 1197–1200

    Google Scholar 

  32. Liu Z X, Escoubet C P, Pu Z, et al. The Double Star mission. Ann Geophysicae, 2005, 23: 2707–2712

    Article  Google Scholar 

  33. Dunlop M W. Coordinated Cluster/Double Star observations of dayside reconnection signatures. Ann Geophys, 2005, 23: 2867–2875

    Article  Google Scholar 

  34. Wang J, Dunlop M W, Pu Z Y. TC1 and Cluster observation of an FTE on 4 January 2004: A close conjunction. Geophys Res Lett, 2007, 34: L03106

    Google Scholar 

  35. Balogh A. The Cluster magnetic field investigation: overview of in-flight performance and initial results. Ann Geophyicae, 2001, 19: 1207–1217

    Google Scholar 

  36. Rème H. First multispacecraft ion measurement in and near the Earth’s magnetosphere with the identical Cluster ion spectro-metry (CIS) experiment. Ann Geophyicae, 2001, 19: 1303–1354

    Google Scholar 

  37. Rème H. The HIA instrument onboard the Tan Ce 1 Double Star near-Equatorial Spacecraft and its first results. Ann Geophysicae, 2005, 23: 2757–2774

    Google Scholar 

  38. Sonnerup B U O, Cahill L J. Magnetopause structure and attitude from Explorer 12 observations. J Geophys Res, 1967, 72: 171–183

    Article  Google Scholar 

  39. Sonnerup B U O, Cahill L J. Of the magnetopause current layer. J Geophys Res, 1968, 73: 1757–1770

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangQing Yan.

Additional information

Supported by the Ministry of Science and Technology of China (Grant No. 2006CB806305), the National Natural Science Foundation of China (Grant Nos. 40621003, 40674094), and the Hundred Talents Program of the CAS

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, G., Shen, C., Liu, Z. et al. Solar wind transport into magnetosphere caused by magnetic reconnection at high latitude magnetopause during northward IMF: Cluster-DSP conjunction observations. Sci. China Ser. E-Technol. Sci. 51, 1677–1684 (2008). https://doi.org/10.1007/s11431-008-0260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0260-0

Keywords

Navigation