Skip to main content
Log in

Review of zero-net-mass-flux jet and its application in separation flow control

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Since the zero-net-mass-flux (ZNMF) jet was first used as a laboratory flow control method in 1990’s, it has attracted much attention. The ZNMF jet has unique features such as compact actuator, no requirement for external air supply, complex piping, etc., and becomes a hot topic research subject in fluid mechanics. This review introduces the state of the art in the development of ZNMF jet in the quiescent fluid, the interaction of the ZNMF jet with the cross flow and its application in the separation flow control. The evolution of the vortex ring/pair and the spacial flow structure of the ZNMF in quicent fluid or cross flow are presented, as well as the key parameter effects. At last, the applications of ZNMF jet in the wake control of the circular cylinder, the separation control on the airfoil and the aerodynamic force or moment control on MAV/UAV are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ingard U, Labate S. Acoustic circulation effects and the nonlinear impedance of orifices. J Acoust Soc Am, 22(2): 211–218

  2. Ming X, Dai C Y, Shi S X. A new phenomenon of acoustic streaming. Acta Mech Sin (in Chinese), 1992, 24(1): 48–54

    Google Scholar 

  3. Wiltse J, Glezer A. Manipulation of free shear flows using piezoelectric actuators. J Fluid Mech, 1993, 249: 261–285

    Article  Google Scholar 

  4. Luo Z B, Xia Z X. Advances in synthetic jet technology and applications in flow control. Adv Mech (in Chinese), 2005, 35(2): 221–234

    Google Scholar 

  5. Luo Z B, Xia Z X, Liu B. New generation of synthetic jet actuators. AIAA J, 2006, 44(10): 2418–2420

    Article  Google Scholar 

  6. Luo Z B, Xia Z X. A novel valve-less synthetic-jet-based micro-pump. Sensor Actuat A-Phys, 2005, 122(1): 131–140

    Article  MathSciNet  Google Scholar 

  7. Zhang P F, Wang J J. Novel signal wave pattern to generate more efficient synthetic jet. AIAA J, 2007, 45(5): 1058–1065

    Article  Google Scholar 

  8. Wang J J, Feng L H, Xu C J. Experimental investigations on separation control and flow structure around a circular cylinder with synthetic jet. Sci China Ser E-Tech Sci, 2007, 50(5): 550–559

    Article  MATH  Google Scholar 

  9. Feng L H, Wang J J, Xu C J. Experimental verification of a novel actuator signal for efficient synthetic jet. J Exp Fluid Mech (in Chinese), 2007, 22(1): 6–10

    Google Scholar 

  10. Liu Y M, Wu N M, Dong J Z, et al. Process mechanism of synthetic jet and its effect on the mixing in coaxial jets. J Beihang University (in Chinese), 2007, 33(1): 5–9

    Google Scholar 

  11. Zhao H, Yang Z G, Lou H J. Experimental investigation of flow characteristics of synthetic jet and it’s preliminary application to combustion. J Aerospace Power (in Chinese), 2004, 19(4): 512–519

    Google Scholar 

  12. Sun J H, Ji Y M, Ming X, et al. Gas oscillations in open pipes and application in atomization. Acta Aerodync Sin (in Chinese), 1997, 15(2): 177–184

    Google Scholar 

  13. Sun J H, Ming X. Effect of nonlinear gas oscillations on wing-tip vortexes. J Nanjing Univ Aeronaut Astronaut (in Chinese), 2004, 36(1): 39–43

    Google Scholar 

  14. Zhang F Y, Li L, Dong Y, et al. Experimental investigation of flow vectoring by using zero-mass synthetic jets actuator. J Propulsion Tech (in Chinese), 2004, 25(3): 224–226

    MathSciNet  Google Scholar 

  15. Hao L S, Qiao Z D. Maximizing the effect of synthetic jet on airfoil separation flow control. J Northwestern Polytech Univ (in Chinese), 2006, 26(4): 528–531

    Google Scholar 

  16. Gao F, Wang L. Numerical study on synthetic flow field of adjacent microjet actuators. Acta Aerodync Sin (in Chinese), 2003, 21(3): 267–274

    Google Scholar 

  17. Luo X B, Li Z X, Guo Z Y. Analysis of the mechanism of synthetic jet formation. J Tsinghua Univ (Sci Tech)(in Chinese), 2000, 40(12): 24–28

    Google Scholar 

  18. Luo X B, Li Z X, Guo Z Y. Numerical simulations on flow field of incompressible synthetic jet. J Eng Thermophys (in Chinese), 2001, 22: 56–58

    Google Scholar 

  19. Glezer A, Amitay M. Synthetic jets. Annu Rev Fluid Mech, 2002, 34: 503–529

    Article  MathSciNet  Google Scholar 

  20. Kiddy J, Chen P, Niemczuk J, et al. Active flow control using micro electro-mechanical systems. AIAA Paper 2000-1561, 2000

  21. Glezer A, Amitay M, Honohan A. Aspects of low and high frequency actuation for aerodynamic flow control. AIAA J, 2005, 43(7): 1501–1511

    Article  Google Scholar 

  22. Smith B L, Glezer A. The formation and evolution of synthetic jets. Phys Fluids, 1998, 10(9): 2281–2297

    Article  MATH  MathSciNet  Google Scholar 

  23. Glezer A. The formation of vortex rings. Phys Fluids, 1988, 31(12): 3532–3541

    Article  Google Scholar 

  24. Zhong S, Jabbal M, Tang H, et al. Toward the design of synthetic jet actuators for full scale Flight conditions, Part 1: the fluid mechanics of synthetic jet actuators, Flow, Turbulence and Combustion, 2007, 78: 283–307

    Article  Google Scholar 

  25. Utturkar Y, Holman R, Mittal R. A jet formation criterion for synthetic jet actuator. AIAA Paper 2003-0636, 2003

  26. Holman R, Utturkar Y, Mittal R, et al. A formation criterion for synthetic jets. AIAA J, 2005, 43(10): 2110–2116

    Article  Google Scholar 

  27. Shuster J.M, Smith D R. Experimental study of the formation and scaling of a round synthetic jet. Phys Fluids, 2007, 19(4): 045109-045109-21

    Google Scholar 

  28. Smith B L, Swift G W. Synthetic jet at large Reynolds number and comparison to continuous jets. AIAA Paper 2001-3030, 2003

  29. Gharib M, Rambod E, Shariff K. A universal time scale for vortex ring formation. J Fluid Mech, 1998, 360: 121–140

    Article  MATH  MathSciNet  Google Scholar 

  30. Smith B L, Glezer A. Vectoring and small scale motions effected in free shear flows using synthetic jet actuators. AIAA Paper 97-0213, 1997

  31. James R D, Jacobs J W. A round turbulent jet produced by an oscillating diaphragm. Phys Fluids, 1996, 8(9): 2484–2495

    Article  Google Scholar 

  32. Gordon M, Cater J E, Soria J. Investigation of the mean passive scalar field in zero-net-mass-flux jets in cross-flow using planar laser induced florescence. Phys Fluids, 2004, 16(3): 794–808

    Article  Google Scholar 

  33. Hassan A, Munts E. Transverse and near tangent synthetic jets for aerodynamic flow control. AIAA Paper 2000-4334, 2000

  34. Duvigneau R, Visonneau M. Simulation and optimization of stall control using a synthetic jet, AIAA paper 2004-2315, 2004

  35. Smith D, Amitay M, Glezer A. Modification of lifting body aerodynamics using synthetic jet actuators. AIAA Paper 98-0209, 1998

  36. Shaw L, Smith B, Saddoughi S. Full scale flight demonstration of active flow control of a pod wake. AIAA Paper 2006-3183, 2006

  37. Rumsey C L, Gatski T B, Sellers W L. Summary of the 2004 CFD validation workshop on synthetic jets and turbulent separation control, AIAA Paper 20004-2217, 2004

  38. Milanovic I, Zaman M, Rumsey C. An Isolated circular synthetic jet in cross-flow at low momentum-flux ratio. AIAA Paper AIAA 2005-1110, 2005

  39. Schaeffler N. The isolated synthetic jet in cross-flow: a benchmark for flow control simulation. AIAA Paper 2004-2219, 2004

  40. Rumsey C. Computation of a synthetic jet in a turbulent cross-flow boundary layer. NASA/TM-2004-213273, 2004

  41. Schaeffler N. The interaction of a synthetic jet and a turbulent boundary layer. AIAA Paper 2003-643, 2003

  42. Keffer J F, Baines W D. The round turbulent jet in a cross-wind. J FluidD Mech, 1963, 15: 481–496

    Article  MATH  Google Scholar 

  43. Pratte B D, Baines W D. Profiles of the round turbulent jet in a cross flow. J Hydraulic Division, Am Soc Civil Eng, 1967, 92(2): 53–64

    Google Scholar 

  44. Smith S H, Mungal M G. Mixing, structure and scaling of the jet in crossflow. J Fluid Mech, 1998, 357: 83–122

    Article  Google Scholar 

  45. Hasselbrink E F, Mungal M G. An analysis of the time-averaged properties of the far field of the transverse jet. AIAA Paper 96-0201, 1996

  46. Ugrina S. Experimental analysis and analytical modeling of synthetic jet cross flow interaction. Ph.D Dissertation. Maryland: University of Maryland, 2007

    Google Scholar 

  47. Mittal R, Rampunggoon P. Interaction of synthetic jet with a flat plate boundary layer. AIAA Paper 01-31243, 2001

  48. Mittal R, Rampunggoon P. On the virtual aeroshaping effect of synthetic jets. Phys Fluids, 2002, 14(4): 1533–1536

    Article  Google Scholar 

  49. Crook A, Wood N J. Measurements and visualization of synthetic jets. AIAA Paper 2001-0145, 2001

  50. Amitay M, Honohan A M, Trautman M, et al. Modification of the aerodynamic characteristics of bluff bodies using fluidic actuators. AIAA Paper 97-2004, 1997

  51. Honohan A.M, Amitay M, Glezer A. Aerodynamic Control Using Synthetic Jets. AIAA Paper 2000-2401, 2000

  52. Catalanoy P, Wang M, Iaccarino G., et al. Optimization of cylinder flow control via actuators with zero net mass flux. Centre for Turbulence Research, Proceedings of the Summer Program. NASA Ames/Stanford University, CA, 2007. 297–304

  53. Smith D R, Amitay M, Valdis K, et al. Modification of lifting body aerodynamics using synthetic jet actuators. AIAA Paper 98-0209, 1998

  54. Amitay M, Smith D R, Kibens V, et al. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J, 2001, 39(3): 361–370

    Google Scholar 

  55. Amitay M, Glezer A. Role of actuation frequency in controlled flow reattachment over a stalled airfoil. AIAA J, 2002, 40(2): 209–216

    Article  Google Scholar 

  56. Zhang P F, Wang J J. Numerical simulation on flow control of stalled NACA0015 airfoil with synthetic jet actuator in re-circulation region. J Beihang Univ (in Chinese), 2008, 34(4): 443–446

    Google Scholar 

  57. Gilarranz, J, Traub L, Rediniotis O. Characterization of a compact, high power synthetic jet actuator flow separation control. AIAA Paper 2002-0127, 2002

  58. Seifert A, Darabi A, Wygnanski I. Delay of airfoil stall by periodic excitation. AIAA J, 1996, 33(4): 691–707

    Google Scholar 

  59. Ravindran S S. Active control of flow separation over an airfoil. NASA/TM-1999-209838, 1999

  60. Tuck A, Soria J. Separation control on a NACA 0015 airfoil using a 2D micro ZNMF. Aircraft Eng Aerospace Technol, 2008, 28(2): 175–180

    Article  Google Scholar 

  61. Donovan J F, Kral L D, Cary A W. Active flow control applied to an airfoil. AIAA Paper 98-0210, 1998

  62. Milanovic I M, Zaman K. Highly inclined jets in cross-flow. AIAA Paper 2003-0183, 2003

  63. Zhong S, Garcillan L, Wood N J. Dye visualisation of inclined and skewed synthetic jets in a cross-flow. Aeronaut J, 2005, 109(2): 147–155

    Google Scholar 

  64. Seifert A, Pack L. Separation control at flight Reynolds numbers — lessons learned and future directions. AIAA Paper 2000-2542, 2000

  65. Suzuki T. Effect of a synthetic jet acting on a separated flow over a hump. J Fluid Mech, 2007, 547: 331–359

    Article  Google Scholar 

  66. Dandois J, Garnier E, Sagaut P. Numerical simulation of active separation control by a synthetic jet. J Fluid Mech, 2007, 574: 25–58

    Article  MATH  Google Scholar 

  67. Brunn A, Nitsche W. Active control of turbulent separated flows over slanted surfaces. Int J Heat Fluid FL, 2006, 27: 748–755

    Article  Google Scholar 

  68. Parviz B A, Najafi K, Muller M O, et al. Electrostatically driven synthetic microjet arrays as a propulsion method for micro flight, Part II: microfabrication and initial characterization. Microsyst Technol, 2005, 11: 1292–1300

    Article  Google Scholar 

  69. Fung P, Amitay M. Control of a miniducted-fan unmanned aerial vehicle using active flow control. J Aircraft, 2002, 39(4): 561–571

    Google Scholar 

  70. Kondor S, Amitay M, Parekh D, et al. Active flow control application on a mini ducted fan UAV. AIAA Paper 2001-2440, 2001

  71. Chatlynne E, Rumigny N, Amitay M, et al. Virtual aero shaping of a Clark-Y airfoil using synthetic jet actuators. AIAA Paper 2001-0732, 2001

  72. Amitay M, Horvath M, Michaux M, et al. Virtual aerodynamic shape modification at low angles of attack using synthetic jet actuators. AIAA Paper 2001-2975, 2001

  73. Washburn A E, Amitay M. Active flow control on the Stingray UAV: physical mechanisms. AIAA Paper 2004-0745, 2004

  74. Amitay M, Parekh D E. Active flow control on the Stingray uninhabited air vehicle: transient behavior. AIAA J, 2004, 42(11): 2205–2215

    Article  Google Scholar 

  75. Ciuryla M, Liu Y, Farnsworth J, et al. Flow control and flight control on a Cessna 182 model. J Aircraft, 2007, 44(2): 653

    Article  Google Scholar 

  76. Wu K E, Breuer K S. Dynamics of synthetic jet actuator arrays for flow control. AIAA Paper 2003-4257, 2003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinJun Wang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10425207) and the Aviation Creative Foundation of China (Grant No. 07A51001)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, P., Wang, J. & Feng, L. Review of zero-net-mass-flux jet and its application in separation flow control. Sci. China Ser. E-Technol. Sci. 51, 1315–1344 (2008). https://doi.org/10.1007/s11431-008-0174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0174-x

Keywords

Navigation