Skip to main content
Log in

Stress dependence of elastic wave dispersion and attenuation in fluid-saturated porous layered media

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The fluid-saturated porous layered (FSPL) media widely exist in the Earth’s subsurface and their overall mechanical properties, microscopic pore structure and wave propagation characteristics are highly relevant to the in-situ stress. However, the effect of in-situ stress on wave propagation in FSPL media cannot be well explained with the existing theories. To fill this gap, we propose the dynamic equations for FSPL media under the effect of in-situ stress based on the theories of poroacoustoelasticity and anisotropic elasticity. Biot loss mechanism is considered to account for the stress-dependent wave dispersion and attenuation induced by global wave-induced fluid flow. Thomsen’s elastic anisotropy parameters are used to represent the anisotropy of the skeleton. A plane-wave analysis is implemented on dynamic equations yields the analytic solutions for fast and slow P waves and two S waves. Modelling results show that the elastic anisotropy parameters significantly determine the stress dependence of wave velocities. Vertical tortuosity and permeability have remarkable effects on fast and slow P-wave velocity curves and the corresponding attenuation peaks but have little effect on S-wave velocity. The difference in velocities of two S waves occurs when the FSPL medium is subjected to horizontal uniaxial stress, and the S wave along the stress direction has a larger velocity, which implies that the additional anisotropy other than that induced by the beddings appears due to horizontal stress. Besides, the predicted velocity results have the reasonable agreement with laboratory measurements. Our equations and results are relevant to a better understanding of wave propagation in deep strata, which provide some new theoretical insights in the rock physics, hydrocarbon exploration and stress detection in deep-strata shale reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach J D. 1984. Wave Propagation in Elastic Solids. Amsterdam: North Holland Publishing Co

    Google Scholar 

  • Ba J, Carcione J M, Cao H, Yao F, Du Q. 2013. Poro-acoustoelasticity of fluid-saturated rocks. Geophys Prospecting, 61: 599–612

    Article  Google Scholar 

  • Ba J, Carcione J M, Nie J X. 2011. Biot-Rayleigh theory of wave propagation in double-porosity media. J Geophys Res, 116: B06202

    Google Scholar 

  • Berjamin H, De Pascalis R. 2022. Acoustoelastic analysis of soft viscoelastic solids with application to pre-stressed phononic crystals. Int J Solids Struct, 241: 111529

    Article  Google Scholar 

  • Bernabé Y, Revil A. 1995. Pore-scale heterogeneity, energy dissipation and the transport properties of rocks. Geophys Res Lett, 22: 1529–1532

    Article  Google Scholar 

  • Biot M A. 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am, 28: 179–191

    Article  Google Scholar 

  • Biot M A. 1956b. Thermoelasticity and irreversible thermodynamics. J Appl Phys, 27: 240–253

    Article  Google Scholar 

  • Biot M A. 1962. Mechanics of deformation and acoustic propagation in porous media. J Appl Phys, 33: 1482–1498

    Article  Google Scholar 

  • Biot M A. 1963. Theory of stability and consolidation of a porous medium under initial stress. J Math Mech, 12: 521–544

    Google Scholar 

  • Bouzidi Y, Schmitt D R. 2009. Measurement of the speed and attenuation of the Biot slow wave using a large ultrasonic transmitter. J Geophys Res, 114: B08201

    Google Scholar 

  • Carcione J M, Cavallini F, Wang E, Ba J, Fu L Y. 2019. Physics and Simulation of Wave Propagation in Linear Thermoporoelastic Media. J Geophys Res-Solid Earth, 124: 8147–8166

    Article  Google Scholar 

  • Carcione J M. 1996. Wave propagation in anisotropic, saturated porous media: Plane-wave theory and numerical simulation. J Acoust Soc Am, 99: 2655–2666

    Article  Google Scholar 

  • Carcione J M. 2015. Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media, 3rd ed. Handbook of Geophysical Exploration. Amsterdam: Elsevier Ltd

    Google Scholar 

  • Chandler R N, Johnson D L. 1981. The equivalence of quasistatic flow in fluid-saturated porous media and Biot’s slow wave in the limit of zero frequency. J Appl Phys, 52: 3391–3395

    Article  Google Scholar 

  • Chen F, Zong Z, Yin X, Feng Y. 2022a. Accurate formulae for P-wave reflectivity and transmissivity for a non-welded contact interface with the effect of in situ vertical stress. Geophys J Int, 229: 311–327

    Article  Google Scholar 

  • Chen F, Zong Z, Yin X. 2022b. Acoustothermoelasticity for joint effects of stress and thermal fields on wave dispersion and attenuation. J Geophys Res-Solid Earth, 127: e2021JB023671

    Article  Google Scholar 

  • Chen F B, Zong Z Y, Yin X Y. 2023. Monitoring the change in horizontal stress with multi-wave time-lapse seismic response based on nonlinear elasticity theory. Pet Sci, 20: 815–826

    Article  Google Scholar 

  • Chen M, Li M, Bernabé Y, Zhao J Z, Zhang L H, Zhang Z Y, Tang Y B, Xiao W L. 2017. Effective pressure law for the intrinsic formation factor in low permeability sandstones. J Geophys Res-Solid Earth, 122: 8709–8723

    Article  Google Scholar 

  • Cheng A H D. 2016. Porochemoelasticity. In: Theory and Applications of Transport in Porous Media, vol. 27. Switzerland: Springer International Publishing

    Google Scholar 

  • David E C, Zimmerman R W. 2012. Pore structure model for elastic wave velocities in fluid-saturated sandstones. J Geophys Res, 117: B07210

    Google Scholar 

  • Degtyar A D, Rokhlin S I. 1998. Stress effect on boundary conditions and elastic wave propagation through an interface between anisotropic media. J Acoust Soc Am, 104: 1992–2003

    Article  Google Scholar 

  • Dewhurst D N, Siggins A F. 2006. Impact of fabric, microcracks and stress field on shale anisotropy. Geophys J Int, 165: 135–148

    Article  Google Scholar 

  • Dong L G, Li Z G, Yang Q R, Zhou Z R. 1999. Physical modeling of elastic waves in transversely isotropic medium. Geophys Prospecting Petroleum, 1: 76–85

    Google Scholar 

  • Dutta N C, Odé H. 1979. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model)—Part II: Results. Geophysics, 44: 1789–1805

    Article  Google Scholar 

  • Dvorkin J, Mavko G, Nur A. 1995. Squirt flow in fully saturated rocks. Geophysics, 60: 97–107

    Article  Google Scholar 

  • Fu B Y, Fu L Y. 2018. Poro-acoustoelasticity with compliant pores for fluid-saturated rocks. Geophysics, 83: WC1–WC14

    Article  Google Scholar 

  • Fu L Y, Fu B Y, Sun W, Han T, Liu J. 2020. Elastic wave propagation and scattering in prestressed porous rocks. Sci China Earth Sci, 63: 1309–1329

    Article  Google Scholar 

  • Gelinsky S, Shapiro S A. 1997. Poroelastic Backus averaging for anisotropic layered fluid- and gas-saturated sediments. Geophysics, 62: 1867–1878

    Article  Google Scholar 

  • Grinfeld M A, Norris A N. 1996. Acoustoelasticity theory and applications for fluid-saturated porous media. J Acoust Soc Am, 100: 1368–1374

    Article  Google Scholar 

  • Gurevich B, Lopatnikov S L. 1995. Velocity and attenuation of elastic waves in finely layered porous rocks. Geophys J Int, 121: 933–947

    Article  Google Scholar 

  • Gurevich B, Makarynska D, de Paula O B, Pervukhina M. 2010. A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. GEOPHYSICS, 75: N109–N120

    Article  Google Scholar 

  • Huang X, Greenhalgh S, Han L, Liu X. 2022. Generalized effective Biot theory and seismic wave propagation in anisotropic, poroviscoelastic media. J Geophys Res-Solid Earth, 127: E2021JB023590

    Article  Google Scholar 

  • Hwankim J, Albertoochoa J, Whitaker S. 1987. Diffusion in anisotropic porous media. Transp Porous Media, 2: 327–356

    Google Scholar 

  • Kim J H, Ochoa J A, Whitaker S. 1987. Diffusion in anisotropic porous media. Transp Porous Media, 2, https://doi.org/10.1007/BF00136440

  • Johnson D L. 2001. Theory of frequency dependent acoustics in patchysaturated porous media. J Acoust Soc Am, 110: 682–694

    Article  Google Scholar 

  • Johnson G C, Mase G T. 1984. Acoustoelasticity in transversely isotropic materials. J Acoust Soc Am, 75: 1741–1747

    Article  Google Scholar 

  • Johnson P A, Rasolofosaon P N J. 1996. Nonlinear elasticity and stress-induced anisotropy in rock. J Geophys Res, 101: 3113–3124

    Article  Google Scholar 

  • Liu H H, Ding P B, Li X Y. 2021. Physical modeling of seismic responses in thin interbedded reservoirs with horizontal fractures. Chin J Geophys, 64: 2927–2940, doi: https://doi.org/10.6038/cjg2021O0167

    Google Scholar 

  • Liu J X, Cui Z W, Li G, Lv W G, Wang K X. 2012. Acoustoelastic effects on flexural waves in a borehole surrounded by a transversely isotropic (VTI) elastic solid. Chin J Geophys, 55: 3485–3492, doi: https://doi.org/10.6038/j.issn.0001-5733.2012.10.032

    Google Scholar 

  • Liu J X, Cui Z W, Sevostianov I. 2021. Effect of stresses on wave propagation in fluid-saturated porous media. Int J Eng Sci, 167: 103519

    Article  Google Scholar 

  • Makhnenko R Y, Podladchikov Y Y. 2018. Experimental Poroviscoelasticity of Common Sedimentary Rocks. J Geophys Res-Solid Earth, 123: 7586–7603

    Article  Google Scholar 

  • Morency C, Tromp J. 2008. Spectral-element simulations of wave propagation in porous media. Geophys J Int, 175: 301–345

    Article  Google Scholar 

  • Nur A, Simmons G. 1969. Stress-induced velocity anisotropy in rock: An experimental study. J Geophys Res, 74: 6667–6674

    Article  Google Scholar 

  • Pao Y H, Sachse W, Fukuoka H. 1984. Acoustoelasticity and ultrasonic measurement of residual stress. Physical Acoustics. London: Academic Press, Inc. (London) Ltd

    Google Scholar 

  • Plona T J. 1980. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl Phys Lett, 36: 259–261

    Article  Google Scholar 

  • Pride S R, Berryman J G, Harris J M. 2004. Seismic attenuation due to wave-induced flow. J Geophys Res, 109: B01201

    Google Scholar 

  • Pride S R, Berryman J G. 2003. Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation. Phys Rev E, 68: 036603

    Article  Google Scholar 

  • Rasolofosaon P. 1998. Stress-Induced Seismic Anisotropy Revisited. Rev Inst Fr Pét, 53: 679–692

    Article  Google Scholar 

  • Rubino J G, Caspari E, Müller T M, Milani M, Barbosa N D, Holliger K. 2016. Numerical upscaling in 2-D heterogeneous poroelastic rocks: Anisotropic attenuation and dispersion of seismic waves. J Geophys Res-Solid Earth, 121: 6698–6721

    Article  Google Scholar 

  • Rüger A. 1997. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 62: 713–722

    Article  Google Scholar 

  • Sarkar D, Bakulin A, Kranz R L. 2003. Anisotropic inversion of seismic data for stressed media: Theory and a physical modeling study on Berea Sandstone. Geophysics, 68: 1–15, DOI: https://doi.org/10.1190/1.1581082

    Article  Google Scholar 

  • Schmitt D R, Currie C A, Zhang L. 2012. Crustal stress determination from boreholes and rock cores: Fundamental principles. Tectonophysics, 580: 1–26

    Article  Google Scholar 

  • Shapiro S A. 2017. Stress impact on elastic anisotropy of triclinic porous and fractured rocks. J Geophys Res-Solid Earth, 2034–2053

  • Sharma M D, Gogna M L. 1991. Wave propagation in anisotropic liquid-saturated porous solids. J Acoust Soc Am, 90: 1068–1073

    Article  Google Scholar 

  • Sharma M D. 2005. Effect of initial stress on the propagation of plane waves in a general anisotropic poroelastic medium. J Geophys Res, 110: B11307

    Google Scholar 

  • Sripanich Y, Vasconcelos I, Tromp J, Trampert J. 2021. Stress-dependent elasticity and wave propagation—New insights and connections. Geophysics, 86: W47–W64

    Article  Google Scholar 

  • Stovas A, Alkhalifah T. 2012. A new traveltime approximation for TI media. Geophysics, 77: C37–C42

    Article  Google Scholar 

  • Sun W, Ba J, Müller T M, Carcione J M, Cao H. 2015. Comparison of P-wave attenuation models of wave-induced flow. Geophys Prospect, 63: 378–390

    Article  Google Scholar 

  • Tang X M. 2011. A unified theory for elastic wave propagation through porous media containing cracks—An extension of Biot’s poroelastic wave theory. Sci China Earth Sci, 54: 1441–1452

    Article  Google Scholar 

  • Thompson M, Willis J R. 1991. A Reformation of the Equations of Anisotropic Poroelasticity. J Appl Mech, 58: 612–616

    Article  Google Scholar 

  • Thomsen L. 1986. Weak elastic anisotropy. Geophysics, 51: 1954–1966

    Article  Google Scholar 

  • Thurston R N, Brugger K. 1964. Third-order elastic constants and the velocity of small amplitude elastic waves in homogeneously stressed media. Phys Rev, 133: A1604–A1610

    Article  Google Scholar 

  • Ursin B, Stovas A. 2006. Traveltime approximations for a layered transversely isotropic medium. Geophysics, 71: D23–D33

    Article  Google Scholar 

  • Walsh J B. 1965. The effect of cracks on the compressibility of rock. J Geophys Res, 70: 381–389

    Article  Google Scholar 

  • Wang E, Carcione J M, Cavallini F, Botelho M, Ba J. 2021. Generalized thermo-poroelasticity equations and wave simulation. Surv Geophys, 42: 133–157

    Article  Google Scholar 

  • White J E, Mihailova N, Lyakhovitsky F. 1975. Low-frequency seismic waves in fluid-saturated layered rocks. J Acoust Soc Am, 57: S30

    Article  Google Scholar 

  • White J E, Mikhaylova N G, Lyakhovitskiy F M. 1975. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40: 224–232

    Article  Google Scholar 

  • Winkler K W, McGowan L. 2004. Nonlinear acoustoelastic constants of dry and saturated rocks. J Geophys Res, 109: B10204

    Google Scholar 

  • Yang J, Yang D, Han H, Qiu L, Cheng Y. 2021. A wave propagation model with the Biot and the fractional viscoelastic mechanisms. Sci China Earth Sci, 64: 364–376

    Article  Google Scholar 

  • Yin H, Zhao J, Tang G, Zhao L, Ma X, Wang S. 2017. Pressure and fluid effect on frequency-dependent elastic moduli in fully saturated tight sandstone. J Geophys Res-Solid Earth, 122: 8925–8942

    Article  Google Scholar 

  • Yin X Y, Zong Z Y, Wu G C. 2015. Research on seismic fluid identification driven by rock physics. Sci China Earth Sci, 58: 159–171

    Article  Google Scholar 

  • Yin Z Y, Chang C S. 2009. Microstructural modelling of stress-dependent behaviour of clay. Int J Solids Struct, 46: 1373–1388

    Article  Google Scholar 

  • Zhang B, Yang D, Cheng Y, Zhang Y. 2019. A unified poroviscoelastic model with mesoscopic and microscopic heterogeneities. Sci Bull, 64: 1246–1254

    Article  Google Scholar 

  • Zong Z, Chen F, Yin X, Li K. 2023. Effect of stress on wave propagation in fluid-saturated porous thermoelastic media. Surv Geophys, 44: 425–462

    Article  Google Scholar 

  • Zuo P, Liu Y, Fan Z. 2021. Modeling of acoustoelastic borehole waves subjected to tectonic stress with formation anisotropy and borehole deviation. Geophysics, 87: D1–D19

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the sponsorship of the National Natural Science Foundation of China (Grant Nos. 42174139, 41974119, 42030103), the Laoshan Laboratory Science and Technology Innovation Program (Grant No. LSKJ202203406), the China Scholarship Council (Grant No. 202206450050), and the Innovation Fund Project for Graduate Students of China University of Petroleum (East China) (Grant No. 23CX04003A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyun Zong.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Zong, Z., Yin, X. et al. Stress dependence of elastic wave dispersion and attenuation in fluid-saturated porous layered media. Sci. China Earth Sci. 66, 2622–2634 (2023). https://doi.org/10.1007/s11430-022-1147-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1147-7

Keywords

Navigation