Skip to main content
Log in

Numerical Analysis of Velocity Dispersion in Multi-Phase Fluid-Saturated Porous Rocks

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Seismic waves are subject to velocity dispersion when they propagate in fluid-saturated porous media. In this work, we explore the velocity dispersion behavior of P- and SV-waves in multi-phase fluid-saturated porous reservoirs while taking into account the effects of multi-phase pore fluids on the effective viscosities that control the wave-induced fluid flow. The effective viscosities associated with the hydrocarbon saturation of a synthetic sandstone reservoir saturated with different pore fluid mixtures are calculated using the Refutas model. We then analyze the frequency-dependent velocity, dispersion variation rate and characteristic frequency for different fluid saturation cases by employing Chapman’s dynamic equivalent-medium theory. The results demonstrate that the hydrocarbon proportions and types in multi-phase mixed pore fluids significantly affect the magnitude and characteristic frequencies of velocity dispersion features for both the P- and S-waves. The dispersion anomalies of SV-waves are in general larger than those of the P-waves. This indicates that the velocity dispersion anomalies of SV-waves are equally sensitive to fluid saturation as the P-waves and should not be neglected. The velocities at lower frequencies (e.g., 10 and 100 Hz) within the seismic frequency range show a more remarkable decrease with increasing hydrocarbon proportion than those at higher frequency (1000 Hz). The numerical examples help to improve the understanding of the frequency-dependent AVO inversion from seismic reflection data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Al-Besharah, J. M., Mumford, C. J., Akashah, S. A., & Salman, O. (1989). Prediction of the viscosity of lubricating oil blends. Fuel, 68(6), 809–811.

    Article  Google Scholar 

  • Al-Besharah, J. M., Salman, O. A., & Akashah, S. A. (1987). Viscosity of crude oil blends. Industrial and Engineering Chemistry Research, 26(12), 2445–2449.

    Article  Google Scholar 

  • Argirov, G., Ivanov, S., & Cholakov, G. (2012). Estimation of crude oil TBP from crude viscosity. Fuel, 97, 358–365.

    Article  Google Scholar 

  • Baird, C. T. (1989). Guide to petroleum product blending. Tulsa: Pennwell Corp.

    Google Scholar 

  • Batzle, M., Han, D., & Castagna, J. (1999). Fluids and frequency dependent seismic velocity of rocks. SEG Technical Program Expanded Abstracts, 18, 5–8.

    Google Scholar 

  • Batzle, M. L., Han, D., & Hofmann, R. (2006). Fluid mobility and frequency-dependent seismic velocity—direct measurements. Geophysics, 71(1), N1–N9.

    Article  Google Scholar 

  • Batzle, M., & Wang, Z. (1992). Seismic properties of pore fluids. Geophysics, 57(11), 1396–1408.

    Article  Google Scholar 

  • Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 33, 1482–1498.

    Article  Google Scholar 

  • Brown, R. L. (2009). Anomalous dispersion due to hydrocarbons: the secret of reservoir geophysics? The Leading Edge, 28(2), 420–425.

    Article  Google Scholar 

  • Carcione, J. M., & Picotti, S. (2006). P-wave seismic attenuation by slow-wave diffusion: effects of inhomogeneous rock properties. Geophysics, 71(3), O1–O8.

    Article  Google Scholar 

  • Castagna, J. P., Sun, S., & Siegfried, R. W. (2003). Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons. The Leading Edge, 22(2), 120–127.

    Article  Google Scholar 

  • Centeno, G., Sánchez-Reyna, G., Ancheyta, J., Muñoz, J. A. D., & Cardona, N. (2011). Testing various mixing rules for calculation of viscosity of petroleum blends. Fuel, 90, 3561–3570.

    Article  Google Scholar 

  • Chapman, M. (2009). Models for the elastic properties of rock saturated with multiple fluids, 71st EAGE Conference & Exhibition, Amsterdam, Netherlands.

  • Chapman, M., Chesnokov, E. M., Devi, K. R. S., & Grechka, V. (2009). Rainbow in the earth—introduction. Geophysics, 74(2), WA1–WA2.

    Article  Google Scholar 

  • Chapman, M., Liu, E., & Li, X. Y. (2005). The influence of abnormally high reservoir attenuation on the AVO signature. The Leading Edge, 24(11), 1120–1125.

    Article  Google Scholar 

  • Chapman, M., Liu, E., & Li, X. Y. (2006). The influence of fluid-sensitive dispersion and attenuation on AVO analysis. Geophysical Journal International, 167, 89–105.

    Article  Google Scholar 

  • Chapman, M., Maultzsch, S., Liu, E., & Li, X. Y. (2003). The effect of fluid saturation in an anisotropic multi-scale equant porosity model. Journal of Applied Geophysics, 54, 191–202.

    Article  Google Scholar 

  • Chapman, M., Zatsepin, S. V., & Crampin, S. (2002). Derivation of a microstructural poroelastic model. Geophysical Journal International, 151, 427–451.

    Article  Google Scholar 

  • Chen, X., He, Z., Gao, G., He, X., & Zou, W. (2013). A fast combined method for fluid flow related frequency-dependent AVO modeling. SEG Technical Program Expanded Abstracts, 32, 3454–3459.

    Google Scholar 

  • Chen, X., He, Z., Huang, D., & Wen, X. (2009). Low frequency shadow detection of gas reservoirs in time-frequency domain. Chinese Journal of Geophysics, 52(1), 215–221.

    Google Scholar 

  • Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London, A241, 376–396.

    Article  Google Scholar 

  • Goloshubin, G. M., Korneev, V. A., & Vingalov, V. M. (2002). Seismic low-frequency effects from oil-saturated reservoir zones. SEG Technical Program Expanded Abstracts, 21, 1813–1816.

    Google Scholar 

  • Goloshubin, G., Vanschuyver, C., Korneev, V., Silin, D., & Vingalov, V. (2006). Reservoir imaging using low frequencies of seismic reflections. The Leading Edge, 25(5), 527–531.

    Article  Google Scholar 

  • Hudson, J. A. (1981). Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal International, 64(1), 133–150.

    Article  Google Scholar 

  • Isakovich, M. A., & Chaban, I. A. (1966). Propagation of sound in strongly viscous liquids. Soviet Physics JEPT, 23(5), 893–905.

    Google Scholar 

  • Ju, M., Namgung, B., & Kim, S. (2012). Application of Refutas model to estimate erythrocyte viscosity in a dextran solution. Macromolecular Research, 20(8), 887–890.

    Article  Google Scholar 

  • Korneev, V. A., Goloshubin, G. M., Daley, T. M., & Silin, D. M. (2004). Seismic low frequency effects in monitoring fluid-saturated reservoirs. Geophysics, 69(2), 522–532.

    Article  Google Scholar 

  • Maples, R. E. (2000). Petroleum refinery process economics (2nd ed.). Tulsa: Pennwell Books.

    Google Scholar 

  • Maultzsch, S., Chapman, M., Liu, E., & Li, X. Y. (2003). Modelling frequency-dependent seismic anisotropy in fluid-saturated rock with aligned fractures: implication of fracture size estimation from anisotropic measurements. Geophysical Prospecting, 51, 381–392.

    Article  Google Scholar 

  • Mavko, G., Mukerji, T., & Dvorkin, J. (2009). The rock physics handbook——tools for seismic analysis in porous media (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • Müller, T., Gurevich, B., & Lebedev, M. (2010). Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks—a review. Geophysics, 75(5), 75A147–75A164.

    Article  Google Scholar 

  • Odebeatu, E., Zhang, J., & Chapman, M. (2006). Application of spectral decomposition to detection of dispersion anomalies associated with gas saturation. The Leading Edge, 25(2), 206–210.

    Article  Google Scholar 

  • Pride, S. R., Berryman, J. G., & Harris, J. M. (2004). Seismic attenuation due to wave-induced flow. Journal of Geophysical Research, 109, B01201.

    Article  Google Scholar 

  • Quintal, B. (2012). Frequency-dependent attenuation as a potential indicator of oil saturation. Journal of Applied Geophysics, 82, 119–128.

    Article  Google Scholar 

  • Quintal, B., Schmalholz, S. M., & Podladchikov, Y. Y. (2011a). Impact of fluid saturation on the reflection coefficient of a poroelastic layer. Geophysics, 76(2), N1–N12.

    Article  Google Scholar 

  • Quintal, B., Steeb, H., Frehner, M., & Schmalholz, S. M. (2011b). Quasi-static finite-element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media. Journal of Geophysical Research, 116, B01201.

    Article  Google Scholar 

  • Rathore, J. S., Fjaer, E., Holt, R. M., & Renlie, L. (1995). P- and S-wave anisotropy of a synthetic sandstone with controlled crack geometry. Geophysical Prospecting, 43(6), 711–728.

    Article  Google Scholar 

  • Rubino, J. G., & Holliger, K. (2012). Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks. Geophysical Journal International, 188, 1088–1102.

    Article  Google Scholar 

  • Rubino, J. G., Ravazzoli, C. L., & Santos, J. E. (2009). Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks. Geophysics, 74(1), N1–N13.

    Article  Google Scholar 

  • Silin, D.B., Korneev, V.M., Goloshubin, G.M., and Patzek, T.W. (2004). A Hydrologic View on Biot’s Theory of Poroelasticity, LBNL Report, 54459.

  • Silin, D. B., Korneev, V. M., Goloshubin, G. M., & Patzek, T. (2006). Low-frequency asymptotic analysis of seismic reflection from a fluid-saturated medium. Transport in Porous Media, 62, 283–305.

    Article  Google Scholar 

  • Tang, X. M., Chen, X. L., & Xu, X. K. (2012). A cracked porous medium elastic wave theory and its application to interpreting acoustic data from tight formations. Geophysics, 77(6), D245–D252.

    Article  Google Scholar 

  • Thomsen, L. (1995). Elastic anisotropy due to aligned cracks in porous rock1. Geophysical Prospecting, 43(6), 805–829

    Article  Google Scholar 

  • Tillotson, P., Chapman, M., Best, A. I., Sothcott, J., McCann, C., Wang, S., et al. (2011). Observations of fluid-dependent shear-wave splitting in synthetic porous rocks with aligned penny-shaped fractures. Geophysical Prospecting, 59, 111–119.

    Article  Google Scholar 

  • Wang, Y. (2007). Seismic time-frequency spectral decomposition by matching pursuit. Geophysics, 72(1), V13–V20.

    Article  Google Scholar 

  • White, J. E., Mikhaylova, N. G., & Lyakhovitskiy, F. M. (1975). Low-frequency seismic waves in fluid saturated layered rocks. Izvestija Academy of Sciences USSR, Physics of the Solid Earth, 11, 654–659.

    Google Scholar 

  • Wilson, A. (2010). Theory and methods of frequency-dependent AVO inversion, Doctoral Dissertation, Edinburgh. PhD thesis, University of Edinburgh.

  • Wu, X., Chapman, M., & Li, X. Y. (2012). Frequency-dependent AVO attribute: theory and example. First Break, 30(6), 67–72.

    Google Scholar 

Download references

Acknowledgements

This work was continuously supported by the National Natural Science Foundation of China (Grant Nos. 41374134 and 41574130), the Sichuan Provincial Foundation Program for Distinguished Youth Leader in Science (Grant No. 2013JQ0011), the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2016ZX05014-001-009), the Sichuan Provincial Youth Science and Technology Innovative Research Group Fund (No. 2016TD0023) and the Cultivating Program of Excellent Innovation Team of Chengdu University of Technology (KYTD201410). We greatly appreciate the anonymous reviewers for constructive comments and suggestions that significantly improved the manuscript. The first author greatly appreciates Prof. Richard L. Gibson, Jr. at Texas A&M University for his assistance and insightful discussions. The corresponding author, Wenli Zhong, would like to thank Prof. Yuehan Lu at the Department of Geological Sciences of The University of Alabama for her support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhong, W., Gao, G. et al. Numerical Analysis of Velocity Dispersion in Multi-Phase Fluid-Saturated Porous Rocks. Pure Appl. Geophys. 174, 1219–1235 (2017). https://doi.org/10.1007/s00024-016-1457-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1457-y

Keywords

Navigation