Skip to main content
Log in

Key geodynamic processes and driving forces of Tethyan evolution

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Tethys tectonic system has experienced a long-term evolution history, including multiple Wilson cycles; thus, it is an ideal target for analyzing plate tectonics and geodynamics. Tethyan evolution is typically characterized by a series of continental blocks that separated from the Gondwana in the Southern Hemisphere, drifted northward, and collided and accreted with Laurasia in the Northern Hemisphere. During this process, the successive opening and closing of multistage Tethys oceans (e.g., Proto-Tethys, Paleo-Tethys, and Neo-Tethys) are considered core parts of the Tethyan evolution. Herein, focusing on the life cycle of an oceanic plate, four key geodynamic processes during the Tethyan evolution, namely, continental margin breakup, subduction initiation (SI), Mid-Ocean Ridge (MOR) subduction, and continental collision, were highlighted and dynamically analyzed to gather the following insights. (1) Breakup of the narrow continental margin terranes from the northern Gondwana is probably controlled by plate subduction, particularly the subduction-induced far-field stretching. The breakup of the Indian continent and the subsequent spreading of the Indian Ocean can be attributed to the interactions between multiple mantle plumes and slab drag-induced far-field stretching. (2) Continental margin terrane collision-induced subduction transference/jump is a key factor in progressive Tethyan evolution, which is driven by the combined forces of collision-induced reverse push, far-field ridge push, and mantle flow traction. Moreover, lithospheric weakening plays an important role in the occurrence of SI. (3) MOR subduction is generally accompanied by slab break-off. In case of the considerably reduced or temporary absence of slab pull, mantle flow traction may contribute to the progression of plate subduction. MOR subduction can dynamically influence the overriding and downgoing plates by producing important and diagnostic geological records. (4) The large gravitational potential energy of the Tibetan Plateau indicates that the long-lasting India-Asia continental collision requires other driving forces beyond the far-field ridge push. Further, the mantle flow traction is a good candidate that may considerably contribute to the continuous collision. The possible future SI in the northern Indian Ocean will release the sustained convergent force and cause the collapse of the Tibetan Plateau. Based on the integration of these four geodynamic processes and their driving forces, a “multiengine-driving” model is proposed for the dynamics of Tethyan evolution, indicating that the multiple stages of Tethys oceanic subduction provide the main driving force for the northward drifting of continental margin terranes. However, the subducting slab pull may be considerably reduced or even lost during tectonic transitional processes, such as terrane collision or MOR subduction. In such stages, the far-field ridge push and mantle flow traction will induce the initiation of new subduction zones, driving the continuous northward convergence of the Tethys tectonic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agard P, Yamato P, Soret M, Prigent C, Guillot S, Plunder A, Dubacq B, Chauvet A, Monié P. 2016. Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation. Earth Planet Sci Lett, 451: 208–220

    Article  Google Scholar 

  • Almalki K A, Betts P G, Ailleres L. 2015. The Red Sea—50 years of geological and geophysical research. Earth-Sci Rev, 147: 109–140

    Article  Google Scholar 

  • Ammann N, Liao J, Gerya T, Ball P. 2018. Oblique continental rifting and long transform fault formation based on 3D thermomechanical numerical modeling. Tectonophysics, 746: 106–120

    Article  Google Scholar 

  • Arcay D, Lallemand S, Abecassis S, Garel F. 2020. Can subduction initiation at a transform fault be spontaneous? Solid Earth, 11: 37–62

    Article  Google Scholar 

  • Arculus R, Gurnis M, Ishizuka O, Reagan M, Pearce J, Sutherland R. 2019. How to create new subduction zones: A global perspective. Oceanography, 32: 160–174

    Article  Google Scholar 

  • Auzemery A, Willingshofer E, Yamato P, Duretz T, Beekman F. 2021. Kinematic boundary conditions favouring subduction initiation at passive margins over subduction at mid-oceanic ridges. Front Earth Sci, 9: 765893

    Article  Google Scholar 

  • Baes M, Sobolev S V. 2017. Mantle flow as a trigger for subduction initiation: A missing element of the Wilson Cycle concept. Geochem Geophys Geosyst, 18: 4469–4486

    Article  Google Scholar 

  • Becker T W, Faccenna C. 2011. Mantle conveyor beneath the Tethyan collisional belt. Earth Planet Sci Lett, 310: 453–461

    Article  Google Scholar 

  • Burkett E R, Billen M I. 2009. Dynamics and implications of slab detachment due to ridge-trench collision. J Geophys Res-Solid Earth, 114: B12

    Article  Google Scholar 

  • Buiter S J H, Torsvik T H. 2014. A review of Wilson Cycle plate margins: A role for mantle plumes in continental break-up along sutures? Gondwana Res, 26: 627–653

    Article  Google Scholar 

  • Cai F, Ding L, Wang H, Laskowski A K, Zhang L, Zhang B, Mohammadi A, Li J, Song P, Li Z, Zhang Q. 2021. Configuration and timing of collision between Arabia and Eurasia in the Zagros Collision Zone, Fars, Southern Iran. Tectonics, 40: e2021TC006762

    Article  Google Scholar 

  • Capitanio F A, Replumaz A, Riel N. 2015. Reconciling subduction dynamics during Tethys closure with large-scale Asian tectonics: Insights from numerical modeling. Geochem Geophys Geosyst, 16: 962–982

    Article  Google Scholar 

  • Chen J, Huang B, Sun L. 2010. New constraints to the onset of the India-Asia collision: Paleomagnetic reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 489: 189–209

    Article  Google Scholar 

  • Chen L, Wang X, Liang X, Wan B, Liu L. 2020. Subduction tectonics vs. plume tectonics—Discussion on driving forces for plate motion. Sci China Earth Sci, 63: 315–328

    Article  Google Scholar 

  • Chu Y, Allen M B, Wan B, Chen L, Lin W, Talebian M, Wu L, Xin G, Feng Z. 2021. Tectonic exhumation across the Talesh-Alborz Belt, Iran, and its implication to the Arabia-Eurasia convergence. Earth-Sci Rev, 221: 103776

    Article  Google Scholar 

  • Coudurier-Curveur A, Karakaş, Ç, Singh S, Tapponnier P, Carton H, Hananto N. 2020. Is there a nascent plate boundary in the Northern Indian Ocean? Geophys Res Lett, 47: e2020GL087362

    Article  Google Scholar 

  • Crameri F, Magni V, Domeier M, Shephard G E, Chotalia K, Cooper G, Eakin C M, Grima A G, Gürer D, Király Á, Mulyukova E, Peters K, Robert B, Thielmann M. 2020. A transdisciplinary and community-driven database to unravel subduction zone initiation. Nat Commun, 11: 3750

    Article  Google Scholar 

  • Dal Zilio L, Faccenda M, Capitanio F. 2018. The role of deep subduction in supercontinent breakup. Tectonophysics, 746: 312–324

    Article  Google Scholar 

  • Dang Z, Zhang N, Li Z X, Huang C, Spencer C J, Liu Y. 2020. Weak orogenic lithosphere guides the pattern of plume-triggered supercontinent break-up. Commun Earth Environ, 1: 51

    Article  Google Scholar 

  • Dilek Y, Furnes H. 2014. Ophiolites and their origins. Elements, 10: 93–100

    Article  Google Scholar 

  • Ding L, Qasim M, Jadoon I A K, Khan M A, Xu Q, Cai F, Wang H, Baral U, Yue Y. 2016. The India-Asia collision in north Pakistan: Insight from the U-Pb detrital zircon provenance of Cenozoic foreland basin. Earth Planet Sci Lett, 455: 49–61

    Article  Google Scholar 

  • Ding L, Kapp P, Cai F, Garzione C N, Xiong Z, Wang H, Wang C. 2022. Timing and mechanisms of Tibetan Plateau uplift. Nat Rev Earth Environ, 3: 652–667

    Article  Google Scholar 

  • Ebinger C J, Sleep N H. 1998. Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature, 395: 788–791

    Article  Google Scholar 

  • Faccenna C, Giardini D, Davy P, Argentieri A. 1999. Initiation of subduction at Atlantic-type margins: Insights from laboratory experiments. J Geophys Res-Solid Earth, 104: 2749–2766

    Article  Google Scholar 

  • Ferrari O M, Hochard C, Stampfli G M. 2008. An alternative plate tectonic model for the Palaeozoic-Early Mesozoic Palaeotethyan evolution of Southeast Asia (Northern Thailand-Burma). Tectonophysics, 451: 346–365

    Article  Google Scholar 

  • Forsyth D, Uyedaf S. 1975. On the relative importance of the driving forces of plate motion. Geophys J Int, 43: 163–200

    Article  Google Scholar 

  • Fournier M, Chamot-Rooke N, Petit C, Huchon P, Al-Kathiri A, Audin L, Beslier M O, D’Acremont E, Fabbri O, Fleury J M, Khanbari K, Lepvrier C, Leroy S, Maillot B, Merkouriev S. 2010. Arabia-Somalia plate kinematics, evolution of the Aden-Owen-Carlsberg triple junction, and opening of the Gulf of Aden. J Geophys Res-Atmos, 115: 1–24

    Article  Google Scholar 

  • Gao R, Zhou H, Guo X Y, Lu Z W, Li W H, Wang H Y, Li H Q, Xiong X S, Huang X F, Xu X. 2022. Deep seismic reflection evidence on the deep processes of tectonic construction of the Tibetan Plateau (in Chinese with English abstract). Earth Sci Front, 29: 14–27

    Google Scholar 

  • Ghosh A, Holt W E, Flesch L M, Haines A J. 2006. Gravitational potential energy of the Tibetan Plateau and the forces driving the Indian plate. Geology, 34: 321–324

    Article  Google Scholar 

  • Gireesh R, Pandey D K. 2014. Basement characteristics along South West Indian Margin. Pet Explor Dev, 41: 68–73

    Article  Google Scholar 

  • Gordon R G. 2009. Lithospheric deformation in the equatorial Indian Ocean: Timing and Tibet. Geology, 37: 287–288

    Article  Google Scholar 

  • Gordon R G, Houseman G A. 2015. Deformation of Indian Ocean lithosphere: Evidence for a highly nonlinear rheological law. J Geophys Res-Solid Earth, 120: 4434–4449

    Article  Google Scholar 

  • Gurnis M, Hall C, Lavier L. 2004. Evolving force balance during incipient subduction. Geochem Geophys Geosyst, 5: Q07001

    Article  Google Scholar 

  • Hall R. 2019. The subduction initiation stage of the Wilson cycle. Geol Soc Lond Spec Publ, 470: 415–437

    Article  Google Scholar 

  • Harper J F. 1975. On the driving forces of plate tectonics. Geophys J Int, 40: 465–474

    Article  Google Scholar 

  • Hess H H. 1962. History of ocean basins. In: Engel A E, James H L, Leonard B F, eds. Petrologic Studies: A Volume in Honor of A.F. Buddington. Geological Society of America. 599–620

  • Hu X, Garzanti E, Wang J, Huang W, An W, Webb A. 2016. The timing of India-Asia collision onset—Facts, theories, controversies. Earth-Sci Rev, 160: 264–299

    Article  Google Scholar 

  • Huangfu P, Li Z H, Zhang K J, Fan W, Zhao J, Shi Y. 2021. India-Tarim lithospheric mantle collision beneath Western Tibet controls the Cenozoic building of Tian Shan. Geophys Res Lett, 48: e94561

    Article  Google Scholar 

  • Isacks B, Oliver J, Sykes L R. 1968. Seismology and the new global tectonics. J Geophys Res, 73: 5855–5899

    Article  Google Scholar 

  • Ishizuka O, Tani K, Reagan M K. 2014. Izu-Bonin-Mariana forearc crust as a modern ophiolite analogue. Elements, 10: 115–120

    Article  Google Scholar 

  • Jolivet L, Tamaki K, Fournier M. 1994. Japan Sea, opening history and mechanism: A synthesis. J Geophys Res, 99: 22237–22259

    Article  Google Scholar 

  • Keenan T E, Encarnación J, Buchwaldt R, Fernandez D, Mattinson J, Rasoazanamparany C, Luetkemeyer P B. 2016. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology. Proc Natl Acad Sci USA, 113: E7359

    Article  Google Scholar 

  • Koptev A, Burov E, Calais E, Leroy S, Gerya T, Guillou-Frottier L, Cloetingh S. 2016. Contrasted continental rifting via plume-craton interaction: Applications to Central East African Rift. Geosci Front, 7: 221–236

    Article  Google Scholar 

  • Korenaga J. 2013. Initiation and evolution of plate tectonics on Earth: Theories and observations. Annu Rev Earth Planet Sci, 41: 117–151

    Article  Google Scholar 

  • Koshnaw R I, Stockli D F, Schlunegger F. 2018. Timing of the Arabia-Eurasia continental collision—Evidence from detrital zircon U-Pb geochronology of the Red Bed Series strata of the northwest Zagros hinterland, Kurdistan region of Iraq. Geology, 47: 47–50

    Article  Google Scholar 

  • Kreemer C, Blewitt G, Klein E C. 2014. A geodetic plate motion and Global Strain Rate Model. Geochem Geophys Geosyst, 15: 3849–3889

    Article  Google Scholar 

  • Krishna K S, Bull J M, Scrutton R A. 2001. Evidence for multiphase folding of the central Indian Ocean lithosphere. Geology, 29: 715–718

    Article  Google Scholar 

  • Krishna K S, Bull J M, Scrutton R A. 2009. Early (pre–8 Ma) fault activity and temporal strain accumulation in the central Indian Ocean. Geology, 37: 227–230

    Article  Google Scholar 

  • Le Pichon X. 1968. Sea-floor spreading and continental drift. J Geophys Res, 73: 3661–3697

    Article  Google Scholar 

  • Leng W, Gurnis M. 2015. Subduction initiation at relic arcs. Geophys Res Lett, 42: 7014–7021

    Article  Google Scholar 

  • Levchenko O V. 1989. Tectonic aspects of intraplate seismicity in the northeastern Indian Ocean. Tectonophysics, 170: 125–139

    Article  Google Scholar 

  • Li Q, Li Z H, Zhong X. 2022. Overriding lithospheric strength affects continental collisional mode selection and subduction transference: Implications for the greater India-Asia convergent system. Front Earth Sci, 10: 919174

    Article  Google Scholar 

  • Li S, Zhao S, Liu X, Cao H, Yu S, Li X, Somerville I, Yu S, Suo Y. 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Sci Rev, 186: 37–75

    Article  Google Scholar 

  • Li S Z, Zhao S J, Li X Y, Cao H H, Liu X, Guo X Y, Xiao W J, Lai S C, Y Z, Li Z H, Yu S Y, Lan H Y. 2016. Proto-Tethys Ocean in East Asia (I): Northern and southern border faults and subduction polarity (in Chinese with English abstract). Acta Petrol Sin, 32: 2609–2627

    Google Scholar 

  • Li Z H, Xu Z, Gerya T, Burg J P. 2013. Collision of continental corner from 3-D numerical modeling. Earth Planet Sci Lett, 380: 98–111

    Article  Google Scholar 

  • Li Z H. 2020. Flat subduction versus big mantle wedge: contrasting modes for deep hydration and overriding craton modification. J Geophys Res-Solid Earth, 125: e2020JB020018

    Article  Google Scholar 

  • Li Z H, Cui Q H, Zhong X Y, Liu M Q, Wang Y, Huangfu P P. 2021. Numerical modeling of continental dynamics: Questions, progress and perspectives (in Chinese with English abstract). Acta Geol Sin, 95: 238–258

    Google Scholar 

  • Li Z H. 2022. Integrated thermodynamic and thermomechanical numerical modeling: A useful method for studying deep Earth water and carbon cycling. Geosyst Geoenviron, 1: 100002

    Article  Google Scholar 

  • Liao S Y, Wang D B, Tang Y, Yin F G, Cao S N, Wang L Q, Wang B D, Sun Z M. 2015. Late Paleozoic Woniusi basaltic province from Sibumasu terrane: Implications for the breakup of eastern Gondwana’s northern margin. Geol Soc Am Bull, 127: 1313–1330

    Article  Google Scholar 

  • Liu C Z, Zhang C, Yang L Y, Zhang L L, Ji W Q, Wu F Y. 2014. Formation of gabbronorites in the Purang ophiolite (SW Tibet) through melting of hydrothermally altered mantle along a detachment fault. Lithos, 205: 127–141

    Article  Google Scholar 

  • Liu C Z, Wu F Y, Liu T, Zhang C, Zhang W Q, Zhang Z Y, Zhang Z, Wei W, Lin Y Z. 2022. An origin of ultraslow spreading ridges for the Yarlung-Tsangpo ophiolites. Fundamental Res, 2: 74–83

    Article  Google Scholar 

  • Liu S, Qian T, Li W, Dou G, Wu P. 2015. Oblique closure of the northeastern Paleo-Tethys in central China. Tectonics, 34: 413–434

    Article  Google Scholar 

  • Liu Y, Liu L, Li Y, Peng D, Wu Z, Cao Z, Li S, Du Q. 2022. Global back-arc extension due to trench-parallel mid-ocean ridge subduction. Earth Planet Sci Lett, 600: 117889

    Article  Google Scholar 

  • Lu G, Kaus B J P, Zhao L, Zheng T. 2015. Self-consistent subduction initiation induced by mantle flow. Terra Nova, 27: 130–138

    Article  Google Scholar 

  • Lu G, Zhao L, Chen L, Wan B, Wu F Y. 2021. Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth? Earth Planet Phys, 5: 123–140

    Article  Google Scholar 

  • Maffione M, Thieulot C, van Hinsbergen D J J, Morris A, Plümper O, Spakman W. 2015. Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra-subduction zone ophiolites. Geochem Geophys Geosyst, 16: 1753–1770

    Article  Google Scholar 

  • Magni V, Faccenna C, van Hunen J, Funiciello F. 2014. How collision triggers backarc extension: Insight into Mediterranean style of extension from 3-D numerical models. Geology, 42: 511–514

    Article  Google Scholar 

  • Manafi M, Arian M, Raeesi S H T, Solgi A. 2013. Tethys subduction history in Caucasus Region. Open J Geol, 03: 222–232

    Article  Google Scholar 

  • Martinod J, Molnar P. 1995. Lithospheric folding in the Indian Ocean and the rheology of the oceanic plate. Bull Soc Geol France, 166: 813–821

    Google Scholar 

  • Maunder B, Prytulak J, Goes S, Reagan M. 2020. Rapid subduction initiation and magmatism in the Western Pacific driven by internal vertical forces. Nat Commun, 11: 1874

    Article  Google Scholar 

  • McKenzie D P, Parker R L. 1967. The North Pacific: An example of tectonics on a sphere. Nature, 216: 1276–1280

    Article  Google Scholar 

  • McQuarrie N, van Hinsbergen D J J. 2013. Retrodeforming the Arabia-Eurasia collision zone: Age of collision versus magnitude of continental subduction. Geology, 41: 315–318

    Article  Google Scholar 

  • Meng J, Gilder S A, Li Y, Wang C, Liu T. 2020. Expanse of greater India in the Late Cretaceous. Earth Planet Sci Lett, 542: 116330

    Article  Google Scholar 

  • Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J Asian Earth Sci, 66: 1–33

    Article  Google Scholar 

  • Molnar P, Lyon-Caen H. 1988. Some simple physical aspects of the support, structure, and evolution of mountain belts. Geol Soc Am Spec Papers, 218: 179–208

    Google Scholar 

  • Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev Geophys, 31: 357–396

    Article  Google Scholar 

  • Morgan W J. 1968. Rises, trenches, great faults, and crustal blocks. J Geophys Res, 73: 1959–1982

    Article  Google Scholar 

  • Mueller S, Phillips R J. 1991. On the initiation of subduction. J Geophys Res-Solid Earth, 96: 651–665

    Article  Google Scholar 

  • Nemčok M, Sinha S T, Doré A G, Lundin E R, Mascle J, Rybár S. 2016. Mechanisms of microcontinent release associated with wrenching-involved continental break-up; A review. Geol Soc Lond Spec Publ, 431: 323–359

    Article  Google Scholar 

  • Nijholt N, Govers R. 2015. The role of passive margins on the evolution of Subduction-Transform Edge Propagators (STEPs). J Geophys Res-Solid Earth, 120: 7203–7230

    Article  Google Scholar 

  • Nikolaeva K, Gerya T V, Marques F O. 2010. Subduction initiation at passive margins: Numerical modeling. J Geophys Res-Solid Earth, 115: 1–9

    Article  Google Scholar 

  • Niu Y. 2020. What drives the continued India-Asia convergence since the collision at 55 Ma? Sci Bull, 65: 169–172

    Article  Google Scholar 

  • Pan G, Wang L, Li R, Yuan S, Ji W, Yin F, Zhang W, Wang B. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. J Asian Earth Sci, 53: 3–14

    Article  Google Scholar 

  • Pearce J A. 2003. Supra-subduction zone ophiolites: The search for modern analogues. Geol Soc Am Special Papers, 373: 269–293

    Google Scholar 

  • Qing J, Liao J, Li L, Gao R. 2021. Dynamic evolution of induced subduction through the inversion of spreading ridges. J Geophys Res-Solid Earth, 126: e2020JB020965

    Article  Google Scholar 

  • Regenauer-Lieb K, Yuen D A, Branlund J. 2001. The initiation of subduction: Criticality by addition of water? Science, 294: 578–580

    Article  Google Scholar 

  • Rey P F, Coltice N, Flament N. 2014. Spreading continents kick-started plate tectonics. Nature, 513: 405–408

    Article  Google Scholar 

  • Richardson R M. 1992. Ridge forces, absolute plate motions, and the intraplate stress field. J Geophys Res, 97: 11739–11,748

    Article  Google Scholar 

  • Samadi R, Gazel E, Mirnejad H, Kawabata H, Baharifar A A, Zakariaee S J S. 2014. Triassic Paleo-Tethys subduction in the center of the Alpine-Himalayan Orogen: Evidence from Dehnow I-type granitoids (NE Iran). N Jb Geol Palä Abhandlungen, 271: 285–306

    Article  Google Scholar 

  • Schmalholz S M, Medvedev S, Lechmann S M, Podladchikov Y. 2014. Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy. Geophys J Int, 197: 680–696

    Article  Google Scholar 

  • Segev A. 2001. Flood basalts, continental breakup and the dispersal of Gondwana: Evidence for periodic migration of upwelling mantle flows (plumes). Stephan Mueller Spec Publ Ser, 2: 171–191

    Article  Google Scholar 

  • Sengor A M C, Burke K. 1978. Relative timing of rifting and volcanism on earth and its tectonic implications. Geophys Res Lett, 5: 419–421

    Article  Google Scholar 

  • Şengör A M C. 1979. Mid-Mesozoic closure of Permo–Triassic Tethys and its implications. Nature, 279: 590–593

    Article  Google Scholar 

  • Shen X, Leng W. 2021. The mode of trench-parallel subduction of the middle ocean ridge. Front Earth Sci, 9: 781117

    Article  Google Scholar 

  • Stampfli G M. 2000. Tethyan oceans. Geol Soc Lond Spec Publ, 173: 1–23

    Article  Google Scholar 

  • Stampfli G M, Borel G D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett, 196: 17–33

    Article  Google Scholar 

  • Stampfli G M, Hochard C, Vérard C, Wilhem C, vonRaumer J. 2013. The formation of Pangea. Tectonophysics, 593: 1–19

    Article  Google Scholar 

  • Stern R. 2004. Subduction initiation: Spontaneous and induced. Earth Planet Sci Lett, 226: 275–292

    Article  Google Scholar 

  • Stern R J, Reagan M, Ishizuka O, Ohara Y, Whattam S. 2012. To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites. Lithosphere, 4: 469–483

    Article  Google Scholar 

  • Stern R J, Gerya T. 2018. Subduction initiation in nature and models: A review. Tectonophysics, 746: 173–198

    Article  Google Scholar 

  • Sun Z, Jiang W, Li H, Pei J, Zhu Z. 2010. New paleomagnetic results of paleocene volcanic rocks from the Lhasa Block: Tectonic implications for the collision of India and Asia. Tectonophysics, 490: 257–266

    Article  Google Scholar 

  • Tan X, Gilder S, Kodama K P, Jiang W, Han Y, Zhang H, Xu H, Zhou D. 2010. New paleomagnetic results from the Lhasa block: Revised estimation of latitudinal shortening across Tibet and implications for dating the India-Asia collision. Earth Planet Sci Lett, 293: 396–404

    Article  Google Scholar 

  • Tatsumi Y, Otofuji Y I, Matsuda T, Nohda S. 1989. Opening of the Sea of Japan back-arc basin by asthenospheric injection. Tectonophysics, 166: 317–329

    Article  Google Scholar 

  • van Hinsbergen D J J, Steinberger B, Doubrovine P V, Gassmöller R. 2011. Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. J Geophys Res, 116: B06101

    Google Scholar 

  • van Hinsbergen D J J, Steinberger B, Guilmette C, Maffione M, Gürer D, Peters K, Plunder A, McPhee P J, Gaina C, Advokaat E L, Vissers R L M, Spakman W. 2021. A record of plume-induced plate rotation triggering subduction initiation. Nat Geosci, 14: 626–630

    Article  Google Scholar 

  • Wan B, Chu Y, Chen L, Liang X, Zhang Z, Ao S, Talebian M. 2021. Paleo-Tethys subduction induced slab-drag opening the Neo-Tethys: Evidence from an Iranian segment of Gondwana. Earth-Sci Rev, 221: 103788

    Article  Google Scholar 

  • Wan B, Wu F, Chen L, Zhao L, Liang X, Xiao W, Zhu R. 2019. Cyclical one-way continental rupture-drift in the Tethyan evolution: Subduction-driven plate tectonics. Sci China Earth Sci, 62: 2005–2016

    Article  Google Scholar 

  • Wang Q, Tang G, Hao L, Wyman D, Ma L, Dan W, Zhang X, Liu J, Huang T, Xu C. 2020. Ridge subduction, magmatism, and metallogenesis. Sci China Earth Sci, 63: 1499–1518

    Article  Google Scholar 

  • Wang Y, Zhang L, Li Z H. 2022. Metamorphic densification can account for the missing felsic crust of the Greater Indian continent. Commun Earth Environ, 3: 166

    Article  Google Scholar 

  • Wilson J T. 1965. A new class of faults and their bearing on continental drift. Nature, 207: 343–347

    Article  Google Scholar 

  • Wilson J T. 1966. Did the Atlantic close and then re-open? Nature, 211: 676–681

    Article  Google Scholar 

  • Wilson J T. 1969. Static or mobile Earth: The current scientific revolution. Tectonophysics, 7: 600–601

    Article  Google Scholar 

  • Wilson R W, Houseman G A, Buiter S J H, McCaffrey K J W, Doré A G. 2019. Fifty years of the Wilson Cycle concept in plate tectonics: an overview. Geol Soc Lond Spec Publ, 470: 1–17

    Article  Google Scholar 

  • Wolstencroft M, Davies J H. 2017. Breaking supercontinents; no need to choose between passive or active. Solid Earth, 8: 817–825

    Article  Google Scholar 

  • Wu F Y, Wan B, Zhao L, Xiao W J, Zhu R X. 2020. Tethyan geodynamics (in Chinese). Acta Petrol Sin, 36: 1627–1674

    Article  Google Scholar 

  • Wu Y, Liao J, Guo F, Wang X C, Shen Y. 2022. Styles of trench-parallel mid-ocean ridge subduction affect cenozoic geological evolution in circum-pacific continental margins. Geophys Res Lett, 49: e98428

    Google Scholar 

  • Xiao L, He Q, Pirajno F, Ni P, Du J, Wei Q. 2008. Possible correlation between a mantle plume and the evolution of Paleo-Tethys Jinshajiang Ocean: Evidence from a volcanic rifted margin in the Xiaru-Tuoding area, Yunnan, SW China. Lithos, 100: 112–126

    Article  Google Scholar 

  • Xiao W J, Ao S J, Yang L, Han C M, Wan B, Zhang J E, Zhang Z Y, Li R, Chen Z Y, Song S H. 2017. Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision. Sci China Earth Sci, 60: 1015–1039

    Article  Google Scholar 

  • Xu W, Li C, Wang M, Fan J, Wu H, Li X. 2017. Subduction of a spreading ridge within the Bangong Co-Nujiang Tethys Ocean: Evidence from Early Cretaceous mafic dykes in the Duolong porphyry Cu-Au deposit, western Tibet. Gondwana Res, 41: 128–141

    Article  Google Scholar 

  • Yang G. 2022. Subduction initiation triggered by collision: A review based on examples and models. Earth-Sci Rev, 232: 104129

    Article  Google Scholar 

  • Yang G, Li Y, Tong L, Wang Z, Si G, Lindagato P, Zeng R. 2022. Natural observations of subduction initiation: Implications for the geodynamic evolution of the Paleo-Asian Ocean. Geosyst Geoenviron, 1: 100009

    Article  Google Scholar 

  • Yang K, Mo X, Zhu Q. 1994. Tectono-volcanic belts and late Paleozoic-early Mesozoic evolution of southwestern Yunnan, China. J Southeast Asian Earth Sci, 10: 245–262

    Article  Google Scholar 

  • Yang S. 2022. Numerical geodynamic modeling of continental break-up: Implications for the Tethyan evolution (in Chinese with English abstract). Doctoral Dissertation. Beijing: University of Chinese Academy of Sciences

    Google Scholar 

  • Yang S, Li Z H, Wan B, Chen L, Kaus B J P. 2021. Subduction-induced back-arc extension versus far-field stretching: Contrasting modes for continental marginal break-up. Geochem Geophys Geosyst, 22: 1–2

    Article  Google Scholar 

  • Zahirovic S, Müller R D, Seton M, Flament N, Gurnis M, Whittaker J. 2012. Insights on the kinematics of the India-Eurasia collision from global geodynamic models. Geochem Geophys Geosyst, 13: 4

    Article  Google Scholar 

  • Zeyen H, Volker F, Wehrle V, Fuchs K, Sobolev S V, Altherr R. 1997. Styles of continental rifting: Crust-mantle detachment and mantle plumes. Tectonophysics, 278: 329–352

    Article  Google Scholar 

  • Zhai Q G, Jahn B M, Zhang R Y, Wang J, Su L. 2011. Triassic Subduction of the Paleo-Tethys in northern Tibet, China: Evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block. J Asian Earth Sci, 42: 1356–1370

    Article  Google Scholar 

  • Zhang C, Liu C Z, Xu Y, Ji W B, Wang J M, Wu F Y, Liu T, Zhang Z Y, Zhang W Q. 2019. Subduction re-initiation at dying ridge of Neo-Tethys: Insights from mafic and metamafic rocks in Lhaze ophiolitic mélange, Yarlung-Tsangbo Suture Zone. Earth Planet Sci Lett, 523: 115707

    Article  Google Scholar 

  • Zhang N, Dang Z, Huang C, Li Z X. 2018. The dominant driving force for supercontinent breakup: Plume push or subduction retreat? Geosci Front, 9: 997–1007

    Article  Google Scholar 

  • Zhang Z, Zhao G, Santosh M, Wang J, Dong X, Shen K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction? Gondwana Res, 17: 615–631

    Article  Google Scholar 

  • Zheng Y F. 2023. Plate tectonics in the twenty-first century. Sci China Earth Sci, 66: 1–40

    Article  Google Scholar 

  • Zhong X, Li Z H. 2019. Forced subduction initiation at passive continental margins: Velocity-driven versus stress-driven. Geophys Res Lett, 46: 11054–11064

    Article  Google Scholar 

  • Zhong X, Li Z H. 2020. Subduction initiation during collision-induced subduction transference: Numerical modeling and implications for the Tethyan evolution. J Geophys Res-Solid Earth, 125: e2019JB019288

    Article  Google Scholar 

  • Zhong X, Li Z H. 2021. Subduction initiation at passive continental margins: A review based on numerical studies. Solid Earth Sci, 6: 249–267

    Article  Google Scholar 

  • Zhong X, Li Z H. 2022a. Formation of metamorphic soles underlying ophiolites during subduction initiation: A systematic numerical study. J Geophys Res-Solid Earth, 127: e2021JB023431

    Article  Google Scholar 

  • Zhong X, Li Z H. 2022b. Wedge-shaped Southern Indian continental margin without proper weakness hinders subduction initiation. Geochem Geophys Geosyst, 23: e2021GC009998

    Article  Google Scholar 

  • Zhong X. 2022. Dynamics and geological records of subduction initiation: Numerical modeling (in Chinese with English abstract). Doctoral Dissertation. Beijing: University of Chinese Academy of Sciences

    Google Scholar 

  • Zhou X, Li Z H, Gerya T V, Stern R J, Xu Z, Zhang J. 2018. Subduction initiation dynamics along a transform fault control trench curvature and ophiolite ages. Geology, 46: 607–610

    Article  Google Scholar 

  • Zhou X, Li Z H, Gerya T V, Stern R J. 2020. Lateral propagation-induced subduction initiation at passive continental margins controlled by preexisting lithospheric weakness. Sci Adv, 6: eaaz1048

    Article  Google Scholar 

  • Zhou X, Wada I. 2021. Differentiating induced versus spontaneous subduction initiation using thermomechanical models and metamorphic soles. Nat Commun, 12: 4632

    Article  Google Scholar 

  • Zhu D C, Zhao Z D, Niu Y, Dilek Y, Hou Z Q, Mo X X. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res, 23: 1429–1454

    Article  Google Scholar 

  • Zhu D C, Wang Q, Zhao Z D, Chung S L, Cawood P A, Niu Y, Liu S A, Wu F Y, Mo X X. 2015. Magmatic record of India-Asia collision. Sci Rep, 5: 14289

    Article  Google Scholar 

  • Zhu R X, Zhao P, Zhao L. 2022. Tectonic evolution and geodynamics of the Neo-Tethys Ocean. Sci China Earth Sci, 65: 1–24

    Article  Google Scholar 

Download references

Acknowledgements

The helpful discussion with Xin ZHOU, Jie LIAO, Nan ZHANG, Fuyuan WU, Ling CHEN, Bo WAN, Yang CHU, Yaolin SHI, Pengpeng HUANGFU, Yang WANG, Qihua CUI, and so on are greatly acknowledged. We also thank the three anonymous reviewers for their constructive comments. Because the topic has covered a wide range of subjects with a large amount of content, we are sorry that it is too difficult to cite all the related papers in order to maintain the coherence and readability of the paper. This paper is a review of the geodynamic studies and extended thoughts during the past four years (2019–2022) in the platform of “Major Research Plan on Tethys Geodynamic System” funded by the National Natural Science Foundation of China (Grant No. 91855208). This work was also supported by the National Natural Science Fundation of China for Distinguished Young Scholars (Grant No. 42225403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Hai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ZH., Cui, F., Yang, S. et al. Key geodynamic processes and driving forces of Tethyan evolution. Sci. China Earth Sci. 66, 2666–2685 (2023). https://doi.org/10.1007/s11430-022-1083-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1083-5

Keywords

Navigation