Skip to main content
Log in

Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The pattern and timing of collision between India and Eurasia have long been a major concern of the international community. However, no consensus has been reached hitherto. To explore and resolve the disagreements in the Himalayan study, in this paper we begin with the methodology and basic principles for the anatomy of composition and nature of convergent margins, then followed by an effort to conduct a similar anatomy for the India-Eurasia collision. One of the most common patterns of plate convergence involves a passive continental margin, an active continental margin and intra-oceanic basins together with accreted terranes in between. The ultimate configuration and location of the terminal suture zone are controlled by the basal surface of the accretionary wedge, which may show fairly complex morphology with Z-shape and fluctuant geometry. One plausible method to determine the terminal suture zone is to dissect the compositions and structures of active continental margins. It requires a focus on various tectonic elements belonging to the upper plate, such as accretionary wedges, high-pressure (HP)-ultra-high-pressure (UHP) metamorphic rocks, Barrovian-type metamorphic rocks and basement nappes, together with superimposed forearc basins. Such geological records can define the extreme limits and the intervening surface separating active margin from the passive one, thus offering a general sketch for the surface trace of the terminal suture zone often with a cryptic feature. Furthermore, the occurrence of the cryptic suture zone in depth may be constrained by geophysical data, which, in combination with outcrop studies of HP-UHP metamorphic rocks, enables us to outline the terminal suture zone. The southern part of the Himalayan orogen records complicated temporal and spatial features, which are hard to be fully explained by the classic “two-plate-one-ocean” template, therefore re-anatomy of the compositions and nature for this region is necessitated. Taking advantage of the methodology and basic principles of plate convergence anatomy and synthesizing previous studies together with our recent research, we may gain new insights into the evolution of the Himalayan orogeny. (1) The Yarlung-Zangbo ophiolite is composed of multiple tectonic units rather than a single terminal suture zone, and a group of different tectonic units were juxtaposed against each other in the backstop of the Gangdese forearc. (2) The Tethyan Himalayan Sequence (THS) contains mélanges with typical block-in-matrix structures, uniform southwards paleocurrents and age spectra of detrital zircons typical of Eurasia continent. All of these facts indicate that the THS belonged to Eurasia plate before the terminal collision, emplaced in the forearc of the Gangdese arc. (3) The Greater Himalayan Crystalline Complex (GHC) and Lesser Himalayan Sequence (LHS) comprise complex components including eclogites emplaced into the GHC and the upper part of the LHS. Judging from the fact that HP-UHP metamorphic rocks are exhumed and emplaced in the upper plate, the GHC and the upper part of the LHS where eclogite occur should be assigned to the upper plate, lying above the terminal subduction zone surface. It is the very surface along which the continuous subduction of the India subcontinent occurred, therefore acting as the terminal, cryptic suture. From the suture further southward, the bulk rock associations of the LHS and Sub-Himalayan Sequence (Siwalik) show little affinity of mélange, probably belonging to the foreland system of the India plate. By the anatomy of tectonic features of all the tectonic units in the Himalayan orogen as well as the ages of the subduction-accretion related deformation, we conclude that the terminal India-Eurasia collision occurred after 14 Ma, the timing of the metamorphism of the eclogites emplaced into the upper plate. The development of rifts stretching in N-S direction in Tibet and tectonic events with the transition from sinistral to dextral movements in shear zones, such as the Ailaoshan fault in East Tibet, can coordinately reflect the scale and geodynamic influence of the India-Eurasia convergence zone. By conducting a detailed anatomy of the southern Himalayas, we propose a new model for the final collision-accretion of the Himalayan orogeny. Our study indicates that the anatomy of structures, composition, and tectonic nature is the key to a better understanding of orogenic belts, which may apply to all the orogenic belts around the world. We also point out that several important issues regarding the detailed anatomy of the structures, compositions and tectonic nature of the Himalayan orogeny in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agard P, Omrani J, Jolivet L, Mouthereau F. 2005. Convergence history across Zagros (Iran): Constraints from collisional and earlier deformation. Int J Earth Sci-Geol Rundsch, 94: 401–419

    Article  Google Scholar 

  • Agard P, Yamato P, Jolivet L, Burov E. 2009. Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms. Earth-Sci Rev, 92: 53–79

    Article  Google Scholar 

  • Aitchison J C, Ali J R, Davis A M. 2007. When and where did India and Asia collide? J Geophys Res, 112: B05423

    Article  Google Scholar 

  • Aitchison J C, Buckman S. 2012. Accordion vs. quantum tectonics: Insights into continental growth processes from the Paleozoic of eastern Gondwana. Gondwana Res, 22: 674–680

    Google Scholar 

  • Bally A W, Allen C R, Geyer R B, Hamilton W B, Hopson C A, Molnar P H, Oliver J E, Opdyke N D, Plafker G, Wu F T. 1980. Notes on the geology of Tibet and adjacent areas-report of the American plate tectonics delegation to the People’s Republic of China. Open-File Rep

    Google Scholar 

  • Ben-Avraham Z, Nur A, Jones D, Cox A. 1981. Continental accretion: From oceanic plateaus to allochthonous terranes. Science, 213: 47–54

    Article  Google Scholar 

  • Bourdon E, Eissen J P, Gutscher M A, Monzier M, Hall M L, Cotten J. 2003. Magmatic response to early aseismic ridge subduction: The Ecuadorian margin case (South America). Earth Planet Sci Lett, 205: 123–138

    Article  Google Scholar 

  • Cai F L, Ding L, Leary R J, Wang H Q, Xu Q, Zhang L Y, Yue Y H. 2012. Tectonostratigraphy and provenance of an accretionary complex within the Yarlung-Zangpo suture zone, southern Tibet: Insights into subduction- accretion processes in the Neo-Tethys. Tectonophysics, 574-575: 181–192

    Article  Google Scholar 

  • Cao S, Neubauer F, Liu J, Genser J, Leiss B. 2011. Exhumation of the Diancang Shan metamorphic complex along the Ailao Shan-Red River belt, southwestern Yunnan, China: Evidence from 40Ar/39Ar thermochronology. J Asian Earth Sci, 42: 525–550

    Article  Google Scholar 

  • Cawood P A, Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Sci Rev, 82: 217–256

    Article  Google Scholar 

  • Cawood P A, Kroner A, Collins W J, Kusky T M, Mooney W D, Windley B F. 2009. Accretionary orogens through Earth history. Geol Soc Lond Spec Publ, 318: 1–36

    Article  Google Scholar 

  • Chen J L, Xu J F, Wang B D, Kang Z Q. 2010. The relationship between the NS-trending grabens and the ultrapotassic volcanic rocks in Lhasa block, Qinghai-Tibetan Plateau (in Chinese). Acta Petrol Min, 29: 341–354

    Article  Google Scholar 

  • Chen Y, Li W, Yuan X, Badal J, Teng J. 2015. Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements. Earth Planet Sci Lett, 413: 13–24

    Article  Google Scholar 

  • Chung S L, Chu M F, Zhang Y, Xie Y, Lo C H, Lee T Y, Lan C Y, Li X, Zhang Q, Wang Y. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci Rev, 68: 173–196

    Article  Google Scholar 

  • Cloos M, Shreve R L. 1988. Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussion. Pure Appl Geophys, 128: 501–545

    Article  Google Scholar 

  • Coleman M, Hodges K V. 1995. Evidence for Tibetan Plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374: 49–52

    Article  Google Scholar 

  • Cottle J M, Jessup M J, Newell D L, Horstwood M S A, Noble S R, Parrish R R, Waters D J, Searle M P. 2009. Geochronology of granulitized eclogite from the Ama Drime Massif: Implications for the tectonic evolution of the South Tibetan Himalaya. Tectonics, 28: TC1002

    Article  Google Scholar 

  • Dewey J F. 2005. Orogeny can be very short. Proc Natl Acad Sci USA, 102: 15286–15293

    Article  Google Scholar 

  • Ding L, Kapp P, Wan X. 2005. Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24: TC3001

    Article  Google Scholar 

  • Ding L, Yue Y H, Cai F L, Xu X X, Zhang Q H, Lai Q Z. 2006. 40Ar/39Ar geochronology, geochemical and Sr-Nd-O isotopic characteristics of the high-Mg ultrapotassic rocks in Lhasa block of Tibet: Implications in the onset time and depth of NS-striking rift system (in Chinese). Acta Geol Sin, 80: 1252–1261

    Google Scholar 

  • Dong Y, Santosh M. 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China. Gondwana Res, 29: 1–40

    Article  Google Scholar 

  • Dürr S B. 1996. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet). Geol Soc Am Bull, 108: 669–684

    Article  Google Scholar 

  • Frank W, Gansser A, Trommsdorff V. 1977. Geological observations in the Ladakh area (Himalayas): A preliminary report. Schweiz Miner Petrog, 57: 89–113

    Google Scholar 

  • Frisch W, Meschede M, Blakey R C. 2010. Plate Tectonics: Continental Drift and Mountain Building. Berlin: Springer Science & Business Media. 212

  • Gao R, Lu Z, Klemperer S L, Wang H, Dong S, Li W, Li H. 2016. Crustalscale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nat Geosci, 9: 555–560

    Article  Google Scholar 

  • Gehrels G E, Yin A, Wang X F. 2003. Detrital-zircon geochronology of the northeastern Tibetan Plateau. Geol Soc Am Bull, 115: 881–896

    Article  Google Scholar 

  • Grujic D, Warren C J, Wooden J L. 2011. Rapid synconvergent exhumation of Miocene-aged lower orogenic crust in the eastern Himalaya. Lithosphere, 3: 346–366

    Article  Google Scholar 

  • Hao J, Chai Y C, Li J L. 1995. New understandings to the Yarlung-Zangbo suture zone (Eastern part), South Tibet (in Chinese). Chin J Geol, 30: 423–431

    Article  Google Scholar 

  • Harrison T M, Wenji C, Leloup P H, Ryerson F J, Tapponnier P. 1992. An Early Miocene transition in deformation regime within the Red River fault zone, Yunnan, and its significance for Indo-Asian tectonics. J Geophys Res, 97: 7159–7182

    Article  Google Scholar 

  • Harrison T M, Copeland P, Kidd W S F, Lovera O M. 1995. Activation of the Nyainqentanghla Shear Zone: Implications for uplift of the southern Tibetan Plateau. Tectonics, 14: 658–676

    Article  Google Scholar 

  • He R Z, Gao R. 2003. Some significances of studying north-southern rift in Tibet Plateau (in Chinese). Pro Geophys, 18: 35–43

    Google Scholar 

  • Hébert R, Bezard R, Guilmette C, Dostal J, Wang C S, Liu Z F. 2012. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Res, 22: 377–397

    Article  Google Scholar 

  • Hibbard J P, Miller B V, Hames W E, Standard I D, Allen J S, Lavallee S B, Boland I B. 2012. Kinematics, U-Pb geochronology, and 40Ar/39Ar thermochronology of the Gold Hill shear zone, North Carolina: The Cherokee orogeny in Carolinia, Southern Appalachians. Geol Soc Am Bull, 124: 643–656

    Article  Google Scholar 

  • Hintersberger E, Thiede R C, Strecker M R, Hacker B R. 2010. East-west extension in the NW Indian Himalaya. Geol Soc Am Bull, 122: 1499–1515

    Article  Google Scholar 

  • Hou Z Q, Qu X M, Yang Z S, Meng X J, Li Z Q, Yang Z M, Zheng M P, Zheng Y Y, Nie F J, Gao Y F, Jiang S H. 2006. Metallogenesis in Tibetan collisional orogenic belt: III. Mineralization in post-collisional extension setting (in Chinese). Min Dep, 25: 629–651

    Google Scholar 

  • Hsü K J, Shu S, Li J L, Chen H H, Pen H P, Sengor A M C. 1988. Mesozoic overthrust tectonics in south China. Geology, 16: 418

    Article  Google Scholar 

  • Hu X, Garzanti E, Moore T, Raffi I. 2015. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59±1 Ma). Geology, 43: 859–862

    Article  Google Scholar 

  • von Huene R, Scholl D W. 1991. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys, 29: 279–316

    Article  Google Scholar 

  • Jahn B, Capdevila R, Liu D, Vernon A, Badarch G. 2004. Sources of Phanerozoic granitoids in the transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd isotopic evidence, and implications for Phanerozoic crustal growth. J Asian Earth Sci, 23: 629–653

    Article  Google Scholar 

  • Ji W Q, Wu F Y, Chung S L, Wang X C, Liu C Z, Li Q L, Liu Z C, Liu X C, Wang J G. 2016. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt-type magmatism in southern Tibet. Geology, 44: 283–286

    Article  Google Scholar 

  • Jiang Z Q, Wang Q, Wyman D A, Li Z X, Yang J H, Shi X B, Ma L, Tang G J, Gou G N, Jia X H, Guo H F. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous- Early Oligocene (~91–30 Ma) intrusive rocks in the Chanang-Zedong area, southern Gangdese. Lithos, 196-197: 213–231

    Article  Google Scholar 

  • Johnston S T, Gutierrez-Alonso G. 2010. The north American Cordillera and west European Variscides: Contrasting interpretations of similar mountain systems. Gondwana Res, 17: 516–525

    Article  Google Scholar 

  • Kali E, Leloup P H, Arnaud N, Mahéo G, Liu D, Boutonnet E, Van der Woerd J, Liu X, Liu-Zeng J, Li H. 2010. Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure-temperature-deformation- time constraints on orogenic models. Tectonics, 29: TC2014

    Article  Google Scholar 

  • Kapp P, Guynn J H. 2004. Indian punch rifts Tibet. Geology, 32: 993–996

    Article  Google Scholar 

  • Kellett D A, Cottle J M, Smit M. 2014. Eocene deep crust at Ama Drime, Tibet: Early evolution of the Himalayan orogen. Lithosphere, 6: 220–229

    Article  Google Scholar 

  • Khan S D, Walker D J, Hall S A, Burke K C, Shah M T, Stockli L. 2009. Did the Kohistan-Ladakh island arc collide first with India? Geol Soc Am Bull, 121: 366–384

    Article  Google Scholar 

  • Konstantinovskaya E A, Malavieille J. 2005. Accretionary orogens: Erosion and exhumation. Geotectonics, 39: 69–86

    Google Scholar 

  • Kusky T M, Bradley D, Donley D T, Rowley D, Haeussler P J. 2003. Controls on intrusion of near-trench magmas of the Sanak-Barabof belt, Alaska, during Paleogene ridge subduction, and consequences for forearc evolution, In: Sisson V B, Roeske S M, Pavlis T L, eds. Geology of A Transpressional Orogen Developed During a Ridge-Trench Interaction Along the North Pacific Margin. Geol Soc Am Spec Paper, 371: 269–292

    Article  Google Scholar 

  • Kusky T M, Windley B F, Safonova I, Wakita K, Wakabayashi J, Polat A, Santosh M. 2013. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion. Gondwana Res, 24: 501–547

    Article  Google Scholar 

  • Landry K R, Coutand I, Whipp D M, Grujic D, Hourigan J K. 2016. Late Neogene tectonically driven crustal exhumation of the Sikkim Himalaya: Insights from inversion of multithermochronologic data. Tectonics, 35: 833–859

    Article  Google Scholar 

  • Lee T Y, Lawver L A. 1994. Cenozoic plate reconstruction of the South China Sea region. Tectonophysics, 235: 149–180

    Article  Google Scholar 

  • Leech M L, Singh S, Jain A K, Klemperer S L, Manickavasagam R M. 2005. The onset of India-Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci Lett, 234: 83–97

    Article  Google Scholar 

  • Leloup P H, Lacassin R, Tapponnier P, Schärer U, Zhong D, Liu X, Zhang L, Ji S, Trinh P T. 1995. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 251: 3–84

    Article  Google Scholar 

  • Li G, Sandiford M, Liu X, Xu Z, Wei L, Li H. 2014. Provenance of Late Triassic sediments in central Lhasa terrane, Tibet and its implication. Gondwana Res, 25: 1680–1689

    Article  Google Scholar 

  • Li J L. 1991. Tectonic facies of collisional orogen. In: Li Q B, ed. Symposium of the Researches on Modern Geology (in Chinese). Nanjing: Nanjing University Press. 267

    Google Scholar 

  • Li X, Mattern F, Zhang C, Zeng Q, Mao G. 2016. Multiple sources of the Upper Triassic flysch in the eastern Himalaya Orogen, Tibet, China: Implications to palaeogeography and palaeotectonic evolution. Tectonophysics, 666: 12–22

    Article  Google Scholar 

  • Liu J L, Song Z J, Cao S Y, Zhai Y F, Wang A J, Gao L, Xiu Q Y, Cao D H. 2006. The dynamic setting and processes of tectonic and magmatic evolution of the oblique collision zone between Indian and Eurasian plates: Exemplified by the tectonic evolution of the Three River region, eastern Tibet (in Chinese). Acta Petrol Sin, 22: 775–786

    Google Scholar 

  • Liu J, Tang Y, Tran M D, Cao S, Zhao L, Zhang Z, Zhao Z, Chen W. 2012. The nature of the Ailao Shan-Red River (ASRR) shear zone: Constraints from structural, microstructural and fabric analyses of metamorphic rocks from the Diancang Shan, Ailao Shan and Day Nui Con Voi massifs. J Asian Earth Sci, 47: 231–251

    Article  Google Scholar 

  • Liu S, Zhang J, Shu G, Li Q. 2005. Mineral chemistry, P-T-t paths and exhumation processes of mafic granulites in Dinggye, Southern Tibet. Sci China Ser D-Earth Sci, 48: 1870–1881

    Article  Google Scholar 

  • Liu X H, Ju Y W, Wei L J, Li G W. 2010. An alternative tectonic model for the Yarlung Zangbo suture zone. Sci China Ser D-Earth Sci, 53: 27–41

    Article  Google Scholar 

  • Liu X, Hsu K J, Ju Y, Li G, Liu X, Wei L, Zhou X, Zhang X. 2012. New interpretation of tectonic model in south Tibet. J Asian Earth Sci, 56: 147–159

    Article  Google Scholar 

  • Lytwyn J, Casey J, Gilbert S, Kusky T. 1997. Arc-like mid-ocean ridge basalt formed seaward of a trench-forearc system just prior to ridge subduction: An example from subaccreted ophiolites in southern Alaska. J Geophys Res, 102: 10225–10243

    Article  Google Scholar 

  • Maffione M, van Hinsbergen D J J, Koornneef L M T, Guilmette C, Hodges K, Borneman N, Huang W, Ding L, Kapp P. 2015. Forearc hyperextension dismembered the south Tibetan ophiolites. Geology, 43: 475–478

    Article  Google Scholar 

  • Makovsky Y, Klemperer S L, Ratschbacher L, Alsdorf D. 1999. Midcrustal reflector on INDEPTH wide-angle profiles: An ophiolitic slab beneath the India-Asia suture in southern Tibet? Tectonics, 18: 793–808

    Article  Google Scholar 

  • Meigs A J, Burbank D W, Beck R A. 1995. Middle-late Miocene (>10 Ma) formation of the Main Boundary thrust in the western Himalaya. Geology, 23: 423–426

    Article  Google Scholar 

  • Mishra A, Srivastava D C, Shah J. 2013. Late Miocene-Early Pliocene reactivation of the Main Boundary Thrust: Evidence from the seismites in southeastern Kumaun Himalaya, India. Sediment Geol, 289: 148–158

    Article  Google Scholar 

  • Mo X, Niu Y, Dong G, Zhao Z, Hou Z, Zhou S, Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chem Geol, 250: 49–67

    Article  Google Scholar 

  • Mottram C M, Parrish R R, Regis D, Warren C J, Argles T W, Harris N B W, Roberts N M W. 2015. Using U-Th-Pb petrochronology to determine rates of ductile thrusting: Time windows into the Main Central Thrust, Sikkim Himalaya. Tectonics, 34: 1355–1374

    Article  Google Scholar 

  • Myrow P M, Hughes N C, Paulsen T S, Williams I S, Parcha S K, Thompson K R, Bowring S A, Peng S C, Ahluwalia A D. 2003. Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet Sci Lett, 212: 433–441

    Article  Google Scholar 

  • Niu Y, Zhao Z, Zhu D C, Mo X. 2013. Continental collision zones are primary sites for net continental crust growth—A testable hypothesis. Earth-Sci Rev, 127: 96–110

    Article  Google Scholar 

  • Osozawa S. 1992. Double ridge subduction recorded in the Shimanto accretionary complex, Japan, and plate reconstruction. Geology, 20: 939–942

    Article  Google Scholar 

  • Pan Y, Kidd W S F. 1992. Nyainqentanglha shear zone: A late Miocene extensional detachment in the southern Tibetan Plateau. Geology, 20: 775–778

    Article  Google Scholar 

  • Pan G T, Ding J, Yao D S, Wang L Q. 2004. Geological Map of the Qinghai- Xizang (Tibet) Plateau and Adjacent Areas (in Chinese). Chengdu: Chengdu Cartographic Publishing House

    Google Scholar 

  • Phillips G, Offler R, Rubatto D, Phillips D. 2015. High-pressure metamorphism in the southern New England Orogen: Implications for long-lived accretionary orogenesis in eastern Australia. Tectonics, 34: 1979–2010

    Article  Google Scholar 

  • Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F, Draganits E. 2005. Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett, 236: 773–796

    Article  Google Scholar 

  • Robertson A H F. 1994. Role of the tectonic facies concept in orogenic analysis and its application to Tethys in the Eastern Mediterranean region. Earth-Sci Rev, 37: 139–213

    Article  Google Scholar 

  • Rowley D B. 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth Planet Sci Lett, 145: 1–13

    Article  Google Scholar 

  • Rubatto D, Regis D, Hermann J, Boston K, Engi M, Beltrando M, McAlpine S R B. 2011. Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. Nat Geosci, 4: 338–342

    Article  Google Scholar 

  • Safonova I, Maruyama S, Kojima S, Komiya T, Krivonogov S, Koshida K. 2016. Recognizing OIB and MORB in accretionary complexes: A new approach based on ocean plate stratigraphy, petrology and geochemistry. Gondwana Res, 33: 92–114

    Article  Google Scholar 

  • Santosh M, Maruyama S, Sato K. 2009. Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India? Gondwana Res, 16: 321–341

    Article  Google Scholar 

  • Searle M. 1995. The rise and fall of Tibet. Nature, 374: 17–18

    Article  Google Scholar 

  • Sengör A M C. 1990. Plate-tectonics and orogenic research after 25 years—A Tethyan perspective. Earth-Sci Rev, 27: 1–201

    Article  Google Scholar 

  • Sengör A M C. 2013. The Pyrenean hercynian keirogen and the Cantabrian Orocline as genetically coupled structures. J Geodyn, 65: 3–21

    Article  Google Scholar 

  • Sengör A M C, Natal’in B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature, 364: 299–307

    Article  Google Scholar 

  • Shaw J, Johnston S T, Gutiérrez-Alonso G, Weil A B. 2012. Oroclines of the Variscan orogen of Iberia: Paleocurrent analysis and paleogeographic implications. Earth Planet Sci Lett, 329-330: 60–70

    Article  Google Scholar 

  • Shervais J W. 2006. The significance of subduction-related accretionary complexes in early Earth processes. Geol Soc Am Bull Spec Pap, 405: 173–192

    Google Scholar 

  • Silver E A, Smith R B. 1983. Comparison of terrane accretion in modern southeast Asia and the Mesozoic north American Cordillera. Geology, 11: 198–202

    Article  Google Scholar 

  • Stern C R. 1991. Role of subduction erosion in the generation of Andean magmas. Geology, 19: 78–81

    Article  Google Scholar 

  • Stöckhert B, Gerya T V. 2005. Pre-collisional high pressure metamorphism and nappe tectonics at active continental margins: A numerical simulation. Terra Nova, 17: 102–110

    Article  Google Scholar 

  • Su X J, Duan G X, Peng X J, Bao J Y, Xiao L. 2006. Geological characterisitics and tectonic evolution of the Yarlung Zangbo junction belt in the Nêdong-Mainling area, Tibet, China (in Chinese). Geol Bull Chin: 25, 700–707

    Google Scholar 

  • Su X J, Huang J G, Duan D H, Yang S S, Deng Z X, Zhao Q H. 2004. Geological Map of Lhünzê County, 1:25000 (in Chinese). Kunming: Yunnan Institue of Geological Survey

    Google Scholar 

  • Tang Y, Liu J L. 2010. Morphotectonics of western Sichuan-Yunnan since Pliocene: The development of basins along fault zones and constraints on far-field intracontinental tectonic process (in Chinese). Acta Petrol Sin: 26, 1925–1937

    Google Scholar 

  • Tapponnier P, Xu Z Q, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294: 1671–1677

    Article  Google Scholar 

  • Tian X, Chen Y, Tseng T L, Klemperer S L, Thybo H, Liu Z, Xu T, Liang X, Bai Z, Zhang X, Si S, Sun C, Lan H, Wang E, Teng J. 2015. Weakly coupled lithospheric extension in southern Tibet. Earth Planet Sci Lett, 430: 171–177

    Article  Google Scholar 

  • van Hinsbergen D J J, Lippert P C, Dupont-Nivet G, McQuarrie N, Doubrovine P V, Spakman W, Torsvik T H. 2012. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc Natl Acad Sci USA, 109: 7659–7664

    Article  Google Scholar 

  • Vitale Brovarone A, Beyssac O, Malavieille J, Molli G, Beltrando M, Compagnoni R. 2013. Stacking and metamorphism of continuous segments of subducted lithosphere in a high-pressure wedge: The example of Alpine Corsica (France). Earth-Sci Rev, 116: 35–56

    Article  Google Scholar 

  • Wakabayashi J. 2015. Anatomy of a subduction complex: Architecture of the Franciscan Complex, California, at multiple length and time scales. Int Geol Rev, 57: 669–746

    Article  Google Scholar 

  • Wakita K. 1988a. Early Cretaceous mélange in the Hida-Kanayama area, central Japan. Bull Geol Sur Jpn, 39: 367–421

    Google Scholar 

  • Wakita K. 1988b. Origin of chaotically mixed rock bodies in the early Jurassic to early Cretaceous sedimentary complex of the Mino terrane, central Japan. Bull Geol Sur Jpn, 39: 675–757

    Google Scholar 

  • Wang C S, Liu Z F, He Z W. 1999. Speculations of the Early Cretaceous Yarlung Zangbo Palaeo-ophiolite in Southern Tibet (in Chinese). Acta Geol Sin, 73: 7–14

    Google Scholar 

  • Wang C S, Dai J, Zhao X, Li Y, Graham S A, He D, Ran B, Meng J. 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics, 621: 1–43

    Article  Google Scholar 

  • Wang C, Li X, Liu Z, Li Y, Jansa L, Dai J, Wei Y. 2012. Revision of the Cretaceous-Paleogene stratigraphic framework, facies architecture and provenance of the Xigaze forearc basin along the Yarlung Zangbo suture zone. Gondwana Res, 22: 415–433

    Article  Google Scholar 

  • Wang E, Kamp P J J, Xu G, Hodges K V, Meng K, Chen L, Wang G, Luo H. 2015. Flexural bending of southern Tibet in a retro foreland setting. Sci Rep, 5: 12076

    Article  Google Scholar 

  • Wang J M, Rubatto D, Zhang J J. 2015. Timing of partial melting and cooling across the greater Himalayan crystalline complex (Nyalam, Central Himalaya): In-sequence thrusting and its implications. J Petrol, 56: 1677–1702

    Article  Google Scholar 

  • Wang J M, Rubatto D, Zhang J J, Liu K. 2014. Partial melting and cooling history of Greater Himalayan Crystalline Complex (Nyalam-Lang Tong): Insight from trace element and U-Pb geochronology study of monazite and rutile (in Chinese). Chinese Geoscience Union, 1: 1837

    Google Scholar 

  • Wang Q, Hawkesworth C J, Wyman D, Chung S L, Wu F Y, Li XH, Li Z X, Gou G N, Zhang X Z, Tang G J, Dan W. 2016. Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nat Commun, 7

  • Wang Y, Zhang L, Zhang J, Wei C. 2017. The youngest eclogite in central Himalaya: P-T path, U-Pb zircon age and its tectonic implication. Gondwana Res, 41: 188–206

    Article  Google Scholar 

  • Wei Y S, Li Y L, Chen X, Wang C S, Li X H, Li X, Zhong H T. 2015. The reconstruction of oceanic plate stratigraphy and its implications: A case study of Zhongba area, southern Tibet (in Chinese). Geol Bull Chin, 34: 1789–1801

    Google Scholar 

  • Willems H, Zhou Z, Zhang B, Gräfe K U. 1996. Stratigraphy of the upper cretaceous and lower tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geol Rundsch, 85: 723–754

    Article  Google Scholar 

  • Windley B F, Alexeiev D, Xiao W J, Kroner A, Badarch G. 2007. Tectonic models for accretion of the central Asian orogenic Belt. J Geol Soc, 164: 31–47

    Article  Google Scholar 

  • Wu F Y, Clift P D, Yang J H. 2007. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India. Tectonics, 26: TC2014

    Article  Google Scholar 

  • Wu F Y, Ji W Q, Wang J G, Liu C Z, Chung S L, Clift P D. 2014. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. Am J Sci, 314: 548–579

    Article  Google Scholar 

  • Wu F Y, Liu C Z, Zhang L L, Zhang C, Wang J G, Ji W Q, Liu X C. 2014. Yarlung Zangbo ophiolite: A critical updated view (in Chinese). Acta Petrol Sin, 30: 293–325

    Google Scholar 

  • Xiao W J, Han C M, Yuan C, Sun M, Lin S, Chen H, Li Z, Li J, Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. J Asian Earth Sci, 32: 102–117

  • Xiao W J, Windley B F, Hao J, Zhai M. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22: 1069

    Article  Google Scholar 

  • Xiao W J, Windley B F, Sun S, Li J, Huang B, Han C M, Yuan C, Sun M, Chen H. 2015. A tale of amalgamation of three Permo-Triassic collage systems in central Asia: Oroclines, sutures, and terminal accretion. Annu Rev Earth Planet Sci, 43: 477–507

    Article  Google Scholar 

  • Xiao W J. 2015. New paleomagnetic data confirm a dual-collision process in the Himalayas. Nat Sci Rev, 2: 395–396

    Article  Google Scholar 

  • Xiao W J, Windley B F, Allen M B, Han C M. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res, 23: 1316–1341

    Article  Google Scholar 

  • Xiao X C, Li T D. 2000. Mechanism of Uplift and Tectonic Evolution of Tibetan Plateau (in Chinese). Guangzhou: Guangdong Science and Technology Press. 313

    Google Scholar 

  • Xiao X C, Qu J C, Chen G M, Zhu Z Z, Guo Q G. 1979. Ophiolite in Chinese Tethyan Himalaya and its Geological significance (in Chinese). Academic Papers of International Geological Communication (1). Beijing: Geological Publishing house. 304

    Google Scholar 

  • Xu Z Q, Dilek Y, Yang J S, Liang F H, Liu F, Ba D Z, Cai Z H, Li G W, Dong H W, Ji S C. 2015. Crustal structure of the Indus-Tsangpo suture zone and its ophiolites in southern Tibet. Gondwana Res, 27: 507–524

    Article  Google Scholar 

  • Yang J S, Dobrzhinetskaya L, Bai W J, Fang Q S, Robinson P T, Zhang J, Green II H W. 2007. Diamond- and coesite-bearing chromitites from the Luobusa ophiolite, Tibet. Geology, 35: 875–878

    Article  Google Scholar 

  • Yang T, Ma Y, Bian W, Jin J, Zhang S, Wu H, Li H, Yang Z, Ding J. 2015. Paleomagnetic results from the Early Cretaceous Lakang Formation lavas: Constraints on the paleolatitude of the Tethyan Himalaya and the India- Asia collision. Earth Planet Sci Lett, 428: 120–133

    Article  Google Scholar 

  • Yao T D, Wu F Y, Ding L, Sun J M, Zhu L P, Piao S L, Deng T, Ni X J, Zheng H B, Ouyang H. 2015. Multispherical interactions and their effects on the Tibetan Plateau’s earth system: A review of the recent researches. Nat Sci Rev, 2: 468–488

    Article  Google Scholar 

  • Yi Z, Huang B, Chen J, Chen L, Wang H. 2011. Paleomagnetism of early Paleogene marine sediments in southern Tibet, China: Implications to onset of the India-Asia collision and size of Greater India. Earth Planet Sci Lett, 309: 153–165

    Google Scholar 

  • Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci, 28: 211–280

    Article  Google Scholar 

  • Yin A. 2006. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev, 76: 1–131

    Article  Google Scholar 

  • Zeng L, Gao L E, Xie K, Liu-Zeng J. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth Planet Sci Lett, 303: 251–266

    Article  Google Scholar 

  • Zhang C H. 1999. A primary discussion on the intraplate orogenic belt (in Chinese). Geosci Front, 6: 295–308

    Google Scholar 

  • Zhang C, Li X, Mattern F, Zeng Q, Mao G. 2016. Composition and sediment dispersal pattern of the Upper Triassic flysch in the eastern Himalayas, China: Significance to provenance and basin analysis. Int J Earth Sci-Geol Rundsch, 274

    Google Scholar 

  • Zhang G W, Guo A L, Liu F T, Xiao Q F. 1996. 3D stcture and dynamics analysis for Qinling Orogenic Belt (in Chinese). Sci China Ser D-Earth Sci, 26(Suppl): 3–8

    Google Scholar 

  • Zhang J E, Xiao W J, Han C M, Mao Q, Ao S, Guo Q, Ma C. 2011. A Devonian to Carboniferous intra-oceanic subduction system in Western Junggar, NW China. Lithos, 125: 592–606

    Article  Google Scholar 

  • Zhang J J, Ding L, Zhong, D L, Zhou, Y. 1999. Extension parallel to Himalayan orogeny: Indictor of collapse or product of compressional uplifting (in Chinese)? Chin Sci Bull, 44: 2031–2036

    Article  Google Scholar 

  • Zhang J J, Yang X Y, Qi G W, Wang D C. 2011. Geochronology of the Malashan dome and its application in formation of the Southern Tibet detachment system (STDS) and Northern Himalayan gneiss domes (NHGD) (in Chinese). Acta Petrol Sin, 27: 3535–3544

    Google Scholar 

  • Zhang J J. 2007. A review on the extensional structures in the northern Himalaya and southern Tibet (in Chinese). Geol Bull Chin, 26: 639–649

    Google Scholar 

  • Zhang L S, Schärer U. 1999. Age and origin of magmatism along the Cenozoic Red River shear belt, China. Contrib Mineral Petrol, 134: 67–85

    Article  Google Scholar 

  • Zhang Z M, Zhao G C, Santosh M, Wang J L, Dong X, Liou J G. 2010. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, south Tibet: Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. J MetamorphGeol, 28: 719–733

    Google Scholar 

  • Zhang Z Y, Xiao W J, Majidifard M R, Zhu R X, Wan B, Ao S J, Chen L, Rezaeian M, Esmaeili R. 2016. Detrital zircon provenance analysis in the Zagros Orogen, SW Iran: Implications for the amalgamation history of the Neo-Tethys. Int J Earth Sci-Geol Rundsch, 94

    Google Scholar 

  • Zhao G, Zhai M. 2013. Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications. Gondwana Res, 23: 1207–1240

    Article  Google Scholar 

  • Zhao W, Kumar P, Mechie J, Kind R, Meissner R, Wu Z, Shi D, Su H, Xue G, Karplus M, Tilmann F. 2011. Tibetan plate overriding the Asian plate in central and northern Tibet. Nat Geosci, 4: 870–873

    Article  Google Scholar 

  • Zheng H, Clift P D, Wang P, Tada R, Jia J, He M, Jourdan F. 2013. Pre- Miocene birth of the Yangtze River. Proc Natl Acad Sci USA, 110: 7556–7561

    Article  Google Scholar 

  • Zheng Y F, Chen Y X, Dai L Q, Zhao Z F. 2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Sci China Earth Sci, 58: 1045–1069

    Article  Google Scholar 

  • Zheng Y F, Xiao W J, Zhao G. 2013. Introduction to tectonics of China. Gondwana Res, 23: 1189–1206

    Article  Google Scholar 

  • Zhou M F, Robinson P T, Malpas J, Edwards S J, Liang Q. 2004. REE and PGE geochemical constraints on the formation of dunites in the Luobusa ophiolite, southern Tibet. J Petrol, 46: 615–639

    Article  Google Scholar 

  • Zhou Z G, Liang D Y, Liu W C, Wan X Q, Zhao X G, Wang K Y. 2006. Characters of slumping accumulationof Upper Cretaceous Zongzuo Formation and demonstrate its caused by large breakup and earthquakes, southern Xizang (Tibet) (in Chinese). Geol Rev, 52: 314–320

    Google Scholar 

  • Zhu D C, Chung S L, Mo X X, Zhao Z D, Niu Y, Song B, Yang Y H. 2009. The 132 Ma Comei-Bunbury large igneous province: Remnants identified in present-day southeastern Tibet and southwestern Australia. Geology, 37: 583–586

    Article  Google Scholar 

  • Zhu D C, Zhao Z D, Niu Y, Dilek Y, Mo X X. 2011. Lhasa terrane in southern Tibet came from Australia. Geology, 39: 727–730

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate advice from and discussions with R X Zhu, Z L Ding, T D Yao, C S Wang, F Y Wu, S L Zhong, E Q Wang, J J Zhang, J J Zhang, W M Fan, L Ding, J F Xu, J M Sun, Q WANG, J X Zhou, and X M Hu. We thank four anonymous reviewers for comments that greatly improved the presentation of the paper. This work was supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB03010801, XDB18020203) and the National Natural Science Foundation of China (Grant Nos. 41230207, 41190075 & 41472192). Contribution to the IGCP Project 592.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenJiao Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Ao, S., Yang, L. et al. Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision. Sci. China Earth Sci. 60, 1015–1039 (2017). https://doi.org/10.1007/s11430-016-9043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-9043-3

Keywords

Navigation