Skip to main content
Log in

Recent weakening of seasonal temperature difference in East Asia beyond the historical range of variability since the 14th century

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Seasonal differences of temperature are crucial components of the Earth’s climate system. However, the relatively short observational record, especially for East Asia, has limited progress in understanding seasonal differences. In this study, we identify ten tree-ring chronologies separately correlated with local winter (December–February) temperatures and twelve different tree-ring chronologies separately correlated with summer (June–August) temperatures across East Asia. Using these discrete seasonal tree-ring chronologies, we develop two independent winter and summer temperature reconstructions covering the period 1376–1995 CE for East Asia, and compare them with model simulations. Our reconstructions show a more significant volcanic cooling and earlier onset of modern warming in summer than in winter. The reconstructed summer-minus-winter temperature decreased since as early as the late 19th century, which has driven the current state of seasonal temperature difference to out of the natural variability since the 1370s. Climate models could generally reproduce the variability and trends in seasonal reconstructions, but might largely underestimate seasonal differences due to the fact that seasonal expressions on external forcing and modes of internal variability are too small. Our study highlights the importance of using proxy-based seasonal reconstructions to evaluate the performance of climate models, and implies a substantial weakening of seasonal temperature differences in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abram N J, McGregor H V, Tierney J E, Evans M N, McKay N P, Kaufman D S. 2016. Early onset of industrial-era warming across the oceans and continents. Nature, 536: 411–418

    Article  Google Scholar 

  • Bova S, Rosenthal Y, Liu Z, Godad S P, Yan M. 2021. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature, 589: 548–553

    Article  Google Scholar 

  • Braconnot P, Harrison S P, Kageyama M, Bartlein P J, Masson-Delmotte V, Abe-Ouchi A, Otto-Bliesner B, Zhao Y. 2012. Evaluation of climate models using palaeoclimatic data. Nat Clim Change, 2: 417–424

    Article  Google Scholar 

  • Brönnimann S, Franke J, Nussbaumer S U, Zumbühl H J, Steiner D, Trachsel M, Hegerl G C, Schurer A, Worni M, Malik A, Flückiger J, Raible C C. 2019. Last phase of the Little Ice Age forced by volcanic eruptions. Nat Geosci, 12: 650–656

    Article  Google Scholar 

  • Büntgen U, Allen K, Anchukaitis K J, Arseneault D, Boucher É, Bräuning A, Chatterjee S, Cherubini P, Churakova O V, Corona C, Gennaretti F, Grießinger J, Guillet S, Guiot J, Gunnarson B, Helama S, Hochreuther P, Hughes M K, Huybers P, Kirdyanov A V, Krusic P J, Ludescher J, Meier W J H, Myglan V S, Nicolussi K, Oppenheimer C, Reinig F, Salzer M W, Seftigen K, Stine A R, Stoffel M, St. George S, Tejedor E, Trevino A, Trouet V, Wang J, Wilson R, Yang B, Xu G, Esper J. 2021. The influence of decision-making in tree ring-based climate reconstructions. Nat Commun, 12: 3411

    Article  Google Scholar 

  • Canadell J G, Monteiro P M S, Costa M H, Cunha L C d, Cox P M, Eliseev A V, Henson S, Ishii M, Jaccard S, Koven C, Lohila A, Patra P K, Piao S, Syampungani S, Zaehle S, Zickfeld K, Alexandrov G A, Bala G, Bopp L, Boysen L, Cao L, Chandra N, Ciais P, Denisov S N, Dentener F J, Douville H, Fay A, Forster P, Fox-Kemper B, Friedlingstein P, Fu W, Fuss S, Garçon V, Gier B, Gillett N P, Gregor L, Haustein K, Haverd V, He J, Hewitt H T, Hoffman F M, Ilyina T, Jackson R, Jones C, Keller D P, Kwiatkowski L, Lamboll R D, Lan X, Laufkötter C, Quéré C L, Lenton A, Lewis J, Liddicoat S, Lorenzoni L, Lovenduski N, Mac-Dougall A H, Mathesius S, Matthews D H, Meinshausen M, Mokhov I I, Naik V, Nicholls Z R J, Nurhati I S, O’Sullivan M, Peters G, Pongratz J, Poulter B, Sallée J-B, Saunois M, Schuur E A G, I.Seneviratne S, Stavert A, Suntharalingam P, Tachiiri K, Terhaar J, Thompson R, Tian H, Turnbull J, Vicente-Serrano S M, Wang X, Wanninkhof R, Williamson P, Brovkin V, Feely R A, Lebehot A D. 2021. Global Carbon and other Biogeochemical Cycles and Feedbacks. IPCC AR6 WGI, Final Government Distribution. Chapter 5

  • Chen F, Yuan Y J, Wei W S, Yu S L, Zhang T W. 2012. Tree ring-based winter temperature reconstruction for Changting, Fujian, subtropical region of Southeast China, since 1850: Linkages to the Pacific Ocean. Theor Appl Climatol, 109: 141–151

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Quere C L, Myneni R B, Piao S, Thornton P. 2013. Carbon and Other Biogeochemical Cycles. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 465–570

    Google Scholar 

  • Cook E R, D’Arrigo R D, Mann M E. 2002. A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation index since A.D. 1400. J Clim, 15: 1754–1764

    Article  Google Scholar 

  • Cook E R, Krusic P J, Anchukaitis K J, Buckley B M, Nakatsuka T, Sano M. 2013. Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E. Clim Dyn, 41: 2957–2972

    Article  Google Scholar 

  • Cook E R, Krusic P J, Jones P D. 2003. Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. Int J Climatol, 23: 707–732

    Article  Google Scholar 

  • Crowley T J, Unterman M B. 2013. Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst Sci Data, 5: 187–197

    Article  Google Scholar 

  • Deyle E R, Maher M C, Hernandez R D, Basu S, Sugihara G. 2016. Global environmental drivers of influenza. Proc Natl Acad Sci USA, 113: 13081–13086

    Article  Google Scholar 

  • Dobrovolny P, Moberg A, Brázdil R, Pfister C, Glaser R, Wilson R, van Engelen A, Limanówka D, Kiss A, Halíčková M, Macková J, Riemann D, Luterbacher J, Böhm R. 2009. Monthly, seasonal and annual temperature reconstructions for Central Europe derived from documentary evidence and instrumental records since AD 1500. Clim Change, 101: 69–107

    Article  Google Scholar 

  • Duan J, Esper J, Büntgen U, Li L, Xoplaki E, Zhang H, Wang L, Fang Y, Luterbacher J. 2017. Weakening of annual temperature cycle over the Tibetan Plateau since the 1870s. Nat Commun, 8: 14008

    Article  Google Scholar 

  • Duan J, Ma Z, Wu P, Xoplaki E, Hegerl G, Li L, Schurer A, Guan D, Chen L, Duan Y, Luterbacher J. 2019. Detection of human influences on temperature seasonality from the nineteenth century. Nat Sustain, 2: 484–490

    Article  Google Scholar 

  • Fan Z X, Bräuning A, Cao K F, Zhu S D. 2009. Growth-climate responses of high-elevation conifers in the central Hengduan Mountains, southwestern China. For Ecol Manage, 258: 306–313

    Article  Google Scholar 

  • Fang K, Chen D, Ilvonen L, Pasanen L, Holmström L, Seppä H, Huang G, Ou T, Linderholm H. 2019a. Oceanic and atmospheric modes in the Pacific and Atlantic Oceans since the Little Ice Age (LIA): Towards a synthesis. Quat Sci Rev, 215: 293–307

    Article  Google Scholar 

  • Fang K, Cook E, Guo Z, Chen D, Ou T, Zhao Y. 2017. Synchronous multi-decadal climate variability of the whole Pacific areas revealed in tree rings since 1567. Environ Res Lett, 13: 024016

    Article  Google Scholar 

  • Fang K, Guo Z, Chen D, Wang L, Dong Z, Zhou F, Zhao Y, Li J, Li Y, Cao X. 2019b. Interdecadal modulation of the Atlantic Multi-decadal Oscillation (AMO) on southwest China’s temperature over the past 250 years. Clim Dyn, 52: 2055–2065

    Article  Google Scholar 

  • Fischer E M, Luterbacher J, Zorita E, Tett S F B, Casty C, Wanner H. 2007. European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett, 34: L05707

    Article  Google Scholar 

  • Fritts H C. 1976. Tree Rings and Climate. London: Academic Press Ge Q, Hao Z, Zheng J, Shao X. 2013. Temperature changes over the past 2000 yr in China and comparison with the Northern Hemisphere. Clim Past, 9: 1153–1160

    Google Scholar 

  • Ge Q, Zheng J, Fang X, Man Z, Zhang X, Zhang P, Wang W C. 2003. Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years. Holocene, 13: 933–940

    Google Scholar 

  • Gou X, Chen F, Jacoby G, Cook E, Yang M, Peng J, Zhang Y. 2007. Rapid tree growth with respect to the last 400 years in response to climate warming, northeastern Tibetan Plateau. Int J Climatol, 27: 1497–1503

    Article  Google Scholar 

  • Hannig J, Marron J S. 2012. Advanced distribution theory for SiZer. J Am Statistical Assoc, 101: 484–499

    Article  Google Scholar 

  • Hao Z X, Zheng J Y, Ge Q S, Wang W C. 2012. Winter temperature variations over the middle and lower reaches of the Yangtze River since 1736 AD. Clim Past, 8: 1023–1030

    Article  Google Scholar 

  • Harris I, Osborn T J, Jones P, Lister D. 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci Data, 7: 109

    Article  Google Scholar 

  • Hawkins E, Ortega P, Suckling E, Schurer A, Hegerl G, Jones P, Joshi M, Osborn T J, Masson-Delmotte V, Mignot J, Thorne P, van Oldenborgh G J. 2017. Estimating changes in global temperature since the pre-industrial period. Bull Am Meteorol Soc, 98: 1841–1856

    Article  Google Scholar 

  • He M, Yang B, Bräuning A, Rossi S, Ljungqvist F C, Shishov V, Grießinger J, Wang J, Liu J, Qin C. 2019. Recent advances in dendroclimatology in China. Earth-Sci Rev, 194: 521–535

    Article  Google Scholar 

  • Hegerl G, Luterbacher J, González-Rouco F, Tett S F B, Crowley T, Xoplaki E. 2011. Influence of human and natural forcing on European seasonal temperatures. Nat Geosci, 4: 99–103

    Article  Google Scholar 

  • Hollesen J, Buchwal A, Rachlewicz G, Hansen B U, Hansen M O, Stecher O, Elberling B. 2015. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century. Glob Change Biol, 21: 2410–2423

    Article  Google Scholar 

  • Huang R, Zhu H, Liang E, Liu B, Shi J, Zhang R, Yuan Y, Grießinger J. 2019. A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE. Clim Dyn, 53: 3221–3233

    Article  Google Scholar 

  • Jungclaus J H, Lohmann K, Zanchettin D. 2014. Enhanced 20th-century heat transfer to the Arctic simulated in the context of climate variations over the last millennium. Clim Past, 10: 2201–2213

    Article  Google Scholar 

  • Krusic P J, Cook E R, Dukpa D, Putnam A E, Rupper S, Schaefer J. 2015. Six hundred thirty-eight years of summer temperature variability over the Bhutanese Himalaya. Geophys Res Lett, 42: 2988–2994

    Article  Google Scholar 

  • Liang E, Shao X, Eckstein D, Huang L, Liu X. 2006. Topography- and species-dependent growth responses of Sabina przewalskii and Picea crassifolia to climate on the northeast Tibetan Plateau. For Ecol Manage, 236: 268–277

    Article  Google Scholar 

  • Liu Y, Song H, Sun C, Song Y, Cai Q, Liu R, Lei Y, Li Q. 2019. The 600-mm precipitation isoline distinguishes tree-ring-width responses to climate in China. Natl Sci Rev, 6: 359–368

    Article  Google Scholar 

  • Lücke L J, Schurer A P, Wilson R, Hegerl G C. 2021. Orbital forcing strongly influences seasonal temperature trends during the last millennium. Geophys Res Lett, 48: e2020GL088776

    Article  Google Scholar 

  • Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H. 2004. European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303: 1499–1503

    Article  Google Scholar 

  • Luterbacher J, Werner J P, Smerdon J E, Fernández-Donado L, González-Rouco F J, Barriopedro D, Ljungqvist F C, Büntgen U, Zorita E, Wagner S, Esper J, McCarroll D, Toreti A, Frank D, Jungclaus J H, Barriendos M, Bertolin C, Bothe O, Brázdil R, Camuffo D, Dobrovolný P, Gagen M, García-Bustamante E, Ge Q, Gómez-Navarro J J, Guiot J, Hao Z, Hegerl G C, Holmgren K, Klimenko V V, Martín-Chivelet J, Pfister C, Roberts N, Schindler A, Schurer A, Solomina O, von Gunten L, Wahl E, Wanner H, Wetter O, Xoplaki E, Yuan N, Zanchettin D, Zhang H, Zerefos C. 2016. European summer temperatures since Roman times. Environ Res Lett, 11: 024001

    Article  Google Scholar 

  • Martinez M E. 2018. The calendar of epidemics: Seasonal cycles of infectious diseases. PLoS Pathog, 14: e1007327

    Article  Google Scholar 

  • Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, Gonzalez Rouco J F, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A. 2013. Information from Paleoclimate Archives. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 383–464

    Google Scholar 

  • Neukom R, Steiger N, Gómez-Navarro J J, Wang J, Werner J P. 2019. No evidence for globally coherent warm and cold periods over the pre-industrial Common Era. Nature, 571: 550–554

    Article  Google Scholar 

  • Osman M B, Das S B, Trusel L D, Evans M J, Fischer H, Grieman M M, Kipfstuhl S, McConnell J R, Saltzman E S. 2019. Industrial-era decline in subarctic Atlantic productivity. Nature, 569: 551–555

    Article  Google Scholar 

  • Otto-Bliesner B L, Brady E C, Fasullo J, Jahn A, Landrum L, Stevenson S, Rosenbloom N, Mai A, Strand G. 2016. Climate variability and change since 850 CE: An ensemble approach with the community earth system model. Bull Am Meteorol Soc, 97: 735–754

    Article  Google Scholar 

  • PAGES2k Consortium. 2017. A global multiproxy database for temperature reconstructions of the Common Era. Sci Data, 4: 170088

    Article  Google Scholar 

  • PAGES2k PMIP3 group. 2015. Continental-scale temperature variability in PMIP3 simulations and PAGES2k regional temperature reconstructions over the past millennium. Clim Past, 11: 1673–1699

    Article  Google Scholar 

  • Pederson N, Cook E R, Jacoby G C, Peteet D M, Griffin K L. 2004. The influence of winter temperatures on the annual radial growth of six northern range margin tree species. Dendrochronologia, 22: 7–29

    Article  Google Scholar 

  • Phipps S J, McGregor H V, Gergis J, Gallant A J E, Neukom R, Stevenson S, Ackerley D, Brown J R, Fischer M J, van Ommen T D. 2013. Paleoclimate data-model comparison and the role of climate forcings over the past 1500 years. J Clim, 26: 6915–6936

    Article  Google Scholar 

  • Qian C, Zhang X. 2019. Changes in temperature seasonality in China: Human influences and internal variability. J Clim, 32: 6237–6249

    Article  Google Scholar 

  • Schmidt G A, Jungclaus J H, Ammann C M, Bard E, Braconnot P, Crowley T J, Delaygue G, Joos F, Krivova N A, Muscheler R, Otto-Bliesner B L, Pongratz J, Shindell D T, Solanki S K, Steinhilber F, Vieira L E A. 2011. Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Dev, 4: 33–45

    Article  Google Scholar 

  • Schurer A P, Hegerl G C, Mann M E, Tett S F B, Phipps S J. 2013. Separating forced from chaotic climate variability over the past millennium. J Clim, 26: 6954–6973

    Article  Google Scholar 

  • Schurer A P, Tett S F B, Hegerl G C. 2014. Small influence of solar variability on climate over the past millennium. Nat Geosci, 7: 104–108

    Article  Google Scholar 

  • Shao X, Xu Y, Yin Z Y, Liang E, Zhu H, Wang S. 2010. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau. Quat Sci Rev, 29: 2111–2122

    Article  Google Scholar 

  • Shi F, Ge Q, Yang B, Li J, Yang F, Ljungqvist F C, Solomina O, Nakatsuka T, Wang N, Zhao S, Xu C, Fang K, Sano M, Chu G, Fan Z, Gaire N P, Zafar M U. 2015. A multi-proxy reconstruction of spatial and temporal variations in Asian summer temperatures over the last millennium. Clim Change, 131: 663–676

    Article  Google Scholar 

  • Shi F, Yang B, Von Gunten L. 2012. Preliminary multiproxy surface air temperature field reconstruction for China over the past millennium. Sci China Earth Sci, 55: 2058–2067

    Article  Google Scholar 

  • Shi S, Li J, Shi J, Zhao Y, Huang G. 2016. Three centuries of winter temperature change on the southeastern Tibetan Plateau and its relationship with the Atlantic Multidecadal Oscillation. Clim Dyn, 49: 1305–1319

    Article  Google Scholar 

  • Sigl M, Winstrup M, McConnell J R, Welten K C, Plunkett G, Ludlow F, Büntgen U, Caffee M, Chellman N, Dahl-Jensen D, Fischer H, Kipfstuhl S, Kostick C, Maselli O J, Mekhaldi F, Mulvaney R, Muscheler R, Pasteris D R, Pilcher J R, Salzer M, Schüpbach S, Steffensen J P, Vinther B M, Woodruff T E. 2015. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 523: 543–549

    Article  Google Scholar 

  • Smerdon J E. 2012. Climate models as a test bed for climate reconstruction methods: Pseudoproxy experiments. WIREs Clim Change, 3: 63–77

    Article  Google Scholar 

  • Song M, Yang B, Ljungqvist F C, Shi F, Qin C, Wang J. 2021. Tree-ring-based winter temperature reconstruction for East Asia over the past 700 years. Sci China Earth Sci, 64: 872–889

    Article  Google Scholar 

  • Stahle D W, Cleaveland M K, Grissino-Mayer H D, Griffin R D, Fye F K, Therrell M D, Burnette D J, Meko D M, Villanueva Diaz J. 2009. Cool- and warm-season precipitation reconstructions over western New Mexico. J Clim, 22: 3729–3750

    Article  Google Scholar 

  • Stahle D W, Cook E R, Burnette D J, Torbenson M C A, Howard I M, Griffin D, Diaz J V, Cook B I, Williams A P, Watson E, Sauchyn D J, Pederson N, Woodhouse C A, Pederson G T, Meko D, Coulthard B, Crawford C J. 2020. Dynamics, variability, and change in seasonal precipitation reconstructions for North America. J Clim, 33: 3173–3195

    Article  Google Scholar 

  • Steinhilber F, Beer J, Fröhlich C. 2009. Total solar irradiance during the Holocene. Geophys Res Lett, 36: L19704

    Article  Google Scholar 

  • Stevenson S, Fasullo J T, Otto-Bliesner B L, Tomas R A, Gao C. 2017. Role of eruption season in reconciling model and proxy responses to tropical volcanism. Proc Natl Acad Sci USA, 114: 1822–1826

    Article  Google Scholar 

  • Stine A R, Huybers P, Fung I Y. 2009. Changes in the phase of the annual cycle of surface temperature. Nature, 457: 435–440

    Article  Google Scholar 

  • Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc, 93: 485–498

    Article  Google Scholar 

  • Toohey M, Sigl M. 2017. Volcanic stratospheric sulfur injections and aerosol optical depth from 500 BCE to 1900 CE. Earth Syst Sci Data, 9: 809–831

    Article  Google Scholar 

  • Vaganov E A, Hughes M K, Shashkin A V. 2006. Growth Dynamics of Conifer Tree Rings: Images of Past and Future Environments. Berlin: Springer Science & Business Media

    Google Scholar 

  • Walther G R, Post E, Convey P, Menzel A, Parmesan C, Beebee T J C, Fromentin J M, Hoegh-Guldberg O, Bairlein F. 2002. Ecological responses to recent climate change. Nature, 416: 389–395

    Article  Google Scholar 

  • Wang J, Yang B, Fang M, Wang Z, Liu J, Kang S. 2022. Synchronization of summer peak temperatures in the Medieval Climate Anomaly and Little Ice Age across the Northern Hemisphere varies with space and time scales. Clim Dyn, https://doi.org/10.1007/s00382-022-06524-6

  • Wang J, Yang B, Ljungqvist F C, Luterbacher J, Osborn T J, Briffa K R, Zorita E. 2017. Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years. Nat Geosci, 10: 512–517

    Article  Google Scholar 

  • Wang J, Yang B, Ljungqvist F C. 2020a. Moisture and temperature covariability over the southeastern Tibetan Plateau during the past nine centuries. J Clim, 33: 6583–6598

    Article  Google Scholar 

  • Wang J, Yang B, Osborn T J, Ljungqvist F C, Zhang H, Luterbacher J. 2018. Causes of East Asian temperature multidecadal variability since 850 CE. Geophys Res Lett, 45: 13,485–13,494

    Article  Google Scholar 

  • Wang J, Yang B, Qin C, Kang S, He M, Wang Z. 2014. Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic Multidecadal Oscillation. Clim Dyn, 43: 627–640

    Article  Google Scholar 

  • Wang J, Yang B, Zheng J, Zhang X, Wang Z, Fang M, Shi F, Liu J. 2020b. Evaluation of multidecadal and longer-term temperature changes since 850 CE based on Northern Hemisphere proxy-based reconstructions and model simulations. Sci China Earth Sci, 63: 1126–1143

    Article  Google Scholar 

  • Wilson R, Anchukaitis K, Briffa K R, Büntgen U, Cook E, D’Arrigo R, Davi N, Esper J, Frank D, Gunnarson B, Hegerl G, Helama S, Klesse S, Krusic P J, Linderholm H W, Myglan V, Osborn T J, Rydval M, Schneider L, Schurer A, Wiles G, Zhang P, Zorita E. 2016. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quat Sci Rev, 134: 1–18

    Article  Google Scholar 

  • Yang B, Qin C, Bräuning A, Osborn T J, Trouet V, Ljungqvist F C, Esper J, Schneider L, Grießinger J, Büntgen U, Rossi S, Dong G, Yan M, Ning L, Wang J, Wang X, Wang S, Luterbacher J, Cook E R, Stenseth N C. 2021. Long-term decrease in Asian monsoon rainfall and abrupt climate change events over the past 6,700 years. Proc Natl Acad Sci USA, 118: 2102007118

    Article  Google Scholar 

  • Yang B, Qin C, Wang J, He M, Melvin T M, Osborn T J, Briffa K R. 2014. A 3,500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proc Natl Acad Sci USA, 111: 2903–2908

    Article  Google Scholar 

  • Yang B, Wang J, Liu J. 2019. A 1556 year-long early summer moisture reconstruction for the Hexi Corridor, Northwestern China. Sci China Earth Sci, 62: 953–963

    Article  Google Scholar 

  • Zhang H, Werner J P, García-Bustamante E, González-Rouco F, Wagner S, Zorita E, Fraedrich K, Jungclaus J H, Ljungqvist F C, Zhu X, Xoplaki E, Chen F, Duan J, Ge Q, Hao Z, Ivanov M, Schneider L, Talento S, Wang J, Yang B, Luterbacher J. 2018. East Asian warm season temperature variations over the past two millennia. Sci Rep, 8: 7702

    Article  Google Scholar 

  • Zheng J, Liu Y, Hao Z, Zhang X, Ma X, Liu H, Ge Q. 2017, Winter temperatures of southern China reconstructed from phenological cold/warm events recorded in historical documents over the past 500 years. Quat Int, 479: 42–47

    Article  Google Scholar 

  • Zheng L, Shi P, Song M, Zhou T, Zong N, Zhang X. 2021. Climate sensitivity of high altitude tree growth across the Hindu Kush Himalaya. For Ecol Manage, 486: 118963

    Article  Google Scholar 

  • Zhu F, Emile-Geay J, Hakim G J, King J, Anchukaitis K J. 2020. Resolving the differences in the simulated and reconstructed temperature response to volcanism. Geophys Res Lett, 47: e86908

    Article  Google Scholar 

  • Zhu H F, Fang X Q, Shao X M, Yin Z Y. 2009. Tree ring-based February–April temperature reconstruction for Changbai Mountain in Northeast China and its implication for East Asian winter monsoon. Clim Past, 5: 661–666

    Article  Google Scholar 

Download references

Acknowledgements

We thank the PAGES2k network members and many others for making their tree-ring data publicly available. The new seasonal temperature reconstructions are publically available on the National Centers for Environmental Information at the National Oceanic and Atmospheric Administration (https://www.ncei.noaa.gov/access/paleosearch/study/37057). This work was supported by the National Natural Science Foundation of China (Grant Nos. 41888101, 41602192, and 41901095) and the National Key R&D Program of China (Grant No. 2017YFA0603302). Jianglin WANG acknowledges the support by the Youth Innovation Promotion Association Foundation of the Chinese Academy of Sciences (Grant No. 2018471). Fredrik Charpentier LJUNGQVIST was supported by the Swedish Research Council (Vetenskapsrådet, Grant No. 2018-01272), and he conducted the work with this article as a Pro Futura Scientia XIII Fellow funded by the Swedish Collegium for Advanced Study through Riksbankens Jubileumsfond.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianglin Wang or Bao Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, B., Wang, Z. et al. Recent weakening of seasonal temperature difference in East Asia beyond the historical range of variability since the 14th century. Sci. China Earth Sci. 66, 1133–1146 (2023). https://doi.org/10.1007/s11430-022-1066-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1066-5

Keywords

Navigation