Skip to main content
Log in

A 1556 year-long early summer moisture reconstruction for the Hexi Corridor, Northwestern China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

We report a 1556 year-long tree-ring width chronology for the Hexi Corridor, in the arid Northwestern China, established by applying the signal-free regional curve standardization method to 416 juniper ring-width series. We found that drought in early summer (May–June) is the primary controlling factor for tree growth in this area. We then developed an early summer moisture (i.e., scPDSI) reconstruction from 455 CE to present. Our reconstruction captures multi-centennial scale moisture variations, showing two long-term dry periods during 800–950 CE and 1000–1200 CE, and two long-term wet periods during 1200–1450 CE and 1510–1620 CE. We found strong similarities between hydroclimatic changes in the Hexi Corridor and Qaidam Basin from interannual to centennial timescales; however, at multi-centennial (>300 years) timescales, hydroclimatic variations in the two regions showed significant regional differences. The Hexi Corridor witnessed a generally dry Medieval Climate Anomaly (MCA, here 800–1200 CE) and the drying 20th century, whereas the Qaidam Basin experienced high-precipitation periods during the MCA and 20th century. The different correlation pattern with Northern Hemisphere temperature suggest that the Qaidam Basin will receive more precipitation under global warming, whereas the Hexi Corridor will become dryer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anchukaitis K J, Wilson R, Briffa K R, Büntgen U, Cook E R, D’Arrigo R, Davi N, Esper J, Frank D, Gunnarson B E, Hegerl G, Helama S, Klesse S, Krusic P J, Linderholm H W, Myglan V, Osborn T J, Zhang P, Rydval M, Schneider L, Schurer A, Wiles G, Zorita E. 2017. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quat Sci Rev, 163: 1–22

    Article  Google Scholar 

  • Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan J O, Herzig F, Heussner K U, Wanner H, Luterbacher J, Esper J. 2011. 2500 years of European climate variability and human susceptibility. Science, 331: 578–582

    Article  Google Scholar 

  • Briffa K R, Melvin T M. 2011. A closer look at regional curve standardization of tree-ring records: Justification of the need, a warning of some pitfalls, and suggested improvements in its application. In: Hughes M K, Diaz H F, Swetnam T W, eds. Dendroclimatology: Progress and Prospects. New York: Springer

    Google Scholar 

  • Buckley B M, Anchukaitis K J, Penny D, Fletcher R, Cook E R, Sano M, Canh Nam L, Wichienkeeo A, That MinhT, Hong T M. 2010. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Natl Acad Sci USA, 107: 6748–6752

    Article  Google Scholar 

  • Chen F, Yuan Y, Wei W, Zhang R, Yu S, Shang H, Zhang T, Qin L, Wang H, Chen F. 2013. Tree-ring-based annual precipitation reconstruction for the Hexi Corridor, NW China: Consequences for climate history on and beyond the mid-latitude Asian continent. Boreas, 42: 1008–1021

    Google Scholar 

  • Chen J, Chen F, Feng S, Huang W, Liu J, Zhou A. 2015. Hydroclimatic changes in China and surroundings during the medieval climate anomaly and Little Ice Age: Spatial patterns and possible mechanisms. Quat Sci Rev, 107: 98–111

    Article  Google Scholar 

  • Cook B I, Ault T R, Smerdon J E. 2015. Unprecedented 21st century drought risk in the American Southwest and central plains. Sci Adv, 1: e1400082

    Article  Google Scholar 

  • Cook E. 1985. A time-series analysis approach to tree-ring standardization. Doctoral Dissertation. Tucson: The University of Arizona

    Google Scholar 

  • Cook E R, Anchukaitis K J, Buckley B M, D’Arrigo R D, Jacoby G C, Wright W E. 2010. Asian monsoon failure and megadrought during the last millennium. Science, 328: 486–489

    Article  Google Scholar 

  • Cook E R, Briffa K R, Jones P D. 1994. Spatial regression methods in dendroclimatology: A review and comparison of two techniques. Int J Climatol, 14: 379–402

    Article  Google Scholar 

  • Cook E R, Briffa K R, Meko D M, Graybill D A, Funkhouser G. 1995. The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene, 5: 229–237

    Article  Google Scholar 

  • Cook E R, Peters K. 1997. Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene, 7: 361–370

    Article  Google Scholar 

  • Dai A. 2013. Increasing drought under global warming in observations and models. Nat Clim Change, 3: 52–58

    Article  Google Scholar 

  • Deng Y, Gou X, Gao L, Zhao Z, Cao Z, Yang M. 2012. Aridity changes in the eastern Qilian Mountains since AD 1856 reconstructed from treerings. Quat Int, 283: 78–84

    Article  Google Scholar 

  • Diaz H F, Trigo R, Hughes M K, Mann M E, Xoplaki E, Barriopedro D. 2011. Spatial and temporal characteristics of climate in Medieval Times revisited. Bull Amer Meteorol Soc, 92: 1487–1500

    Article  Google Scholar 

  • Esper J, Cook E R, Krusic P J, Peters K. 2003. Tests of the RCS method for preserving low-frequency variability in long tree-ring chronologies. Tree-Ring Res, 59: 81–98

    Google Scholar 

  • Esper J, Frank D, Büntgen U, Kirdyanov A. 2009. Influence of pith offset on tree-ring chronology trend. Trace, 7: 205–210

    Google Scholar 

  • Fang K, Frank D, Zhao Y, Zhou F, Seppä H. 2015. Moisture stress of a hydrological year on tree growth in the Tibetan Plateau and surroundings. Environ Res Lett, 10: 034010

    Article  Google Scholar 

  • Fang K, Gou X, Chen F, Li J, D’Arrigo R, Cook E, Yang T, Davi N. 2009. Reconstructed droughts for the southeastern Tibetan Plateau over the past 568 years and its linkages to the Pacific and Atlantic Ocean climate variability. Clim Dyn, 35: 577–585

    Article  Google Scholar 

  • Fritts H C. 1976. Tree Rings and Climate. London: Academic Press

    Google Scholar 

  • Gou X, Deng Y, Gao L, Chen F, Cook E, Yang M, Zhang F. 2015a. Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China. Clim Dyn, 45: 1761–1770

    Article  Google Scholar 

  • Gou X, Gao L, Deng Y, Chen F, Yang M, Still C. 2015b. An 850-year treering- based reconstruction of drought history in the western Qilian Mountains of northwestern China. Int J Climatol, 35: 3308–3319

    Article  Google Scholar 

  • Graham N E, Ammann C M, Fleitmann D, Cobb K M, Luterbacher J. 2010. Support for global climate reorganization during the “Medieval Climate Anomaly”. Clim Dyn, 37: 1217–1245

    Article  Google Scholar 

  • Holmes R. 1983. Computer assisted quality control in tree-ring dating and measurement. Tree-Ring Bull, 43: 69–78

    Google Scholar 

  • Huang J, Yu H, Dai A, Wei Y, Kang L. 2017. Drylands face potential threat under 2°C global warming target. Nat Clim Change, 7: 417–422

    Article  Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R. 2015. Accelerated dryland expansion under climate change. Nat Clim Change, 6: 166–171

    Article  Google Scholar 

  • Huang N E, Shen Z, Long S R, Wu M C, Shih H H, Zheng Q, Yen N C, Tung C C, Liu H H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A-Math Phys Eng Sci, 454: 903–995

    Article  Google Scholar 

  • Kang S, Yang B, Qin C. 2012. Recent tree-growth reduction in north central China as a combined result of a weakened monsoon and atmospheric oscillations. Clim Change, 115: 519–536

    Article  Google Scholar 

  • Li J, Cook E R, D’Arrigo R, Chen F, Gou X. 2008. Moisture variability across China and Mongolia: 1951–2005. Clim Dyn, 32: 1173–1186

    Article  Google Scholar 

  • Li J, Shi J, Zhang D D, Yang B, Fang K, Yue P H. 2017. Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau. Clim Dyn, 48: 649–660

    Article  Google Scholar 

  • Li Q, Liu Y, Nakatsuka T, Fang K, Song H, Liu R, Sun C, Li G, Wang K. 2018. East Asian Summer Monsoon moisture sustains summer relative humidity in the southwestern Gobi Desert, China: Evidence from d18O of tree rings. Clim Dyn, https://doi.org/10.1007/s00382-018-4515-6

    Google Scholar 

  • Liang E, Shao X, Liu X. 2009. Annual precipitation variation inferred from tree rings since AD 1770 for the Western Qilian Mts., Northern Tibetan Plateau. Tree-Ring Res, 65: 95–103

    Article  Google Scholar 

  • Liang E, Leuschner C, Dulamsuren C, Wagner B, Hauck M. 2016a. Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. Clim Change, 134: 163–176

    Article  Google Scholar 

  • Liang E, Wang Y, Piao S, Lu X, Camarero J J, Zhu H, Zhu L, Ellison A M, Ciais P, Peñuelas J. 2016b. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc Natl Acad Sci USA, 113: 4380–4385

    Article  Google Scholar 

  • Liu Y, An Z, Ma H, Cai Q, Liu Z, Kutzbach J K, Shi J, Song H, Sun J, Yi L, Li Q, Yang Y, Wang L. 2006. Precipitation variation in the northeastern Tibetan Plateau recorded by the tree rings since 850 AD and its relevance to the Northern Hemisphere temperature. Sci China Ser D-Eartn Sci, 49: 408–420

    Article  Google Scholar 

  • Liu Y, Sun C, Li Q, Cai Q. 2016. A picea crassifolia tree-ring width-based temperature reconstruction for the Mt. Dongda region, Northwest China, and its relationship to large-scale climate forcing. PLoS ONE, 11: e0160963

    Article  Google Scholar 

  • Ljungqvist F C, Krusic P J, Brattström G, Sundqvist H S. 2012. Northern Hemisphere temperature patterns in the last 12 centuries. Clim Past, 8: 227–249

    Article  Google Scholar 

  • Ljungqvist F C, Krusic P J, Sundqvist H S, Zorita E, Brattström G, Frank D. 2016. Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature, 532: 94–98

    Article  Google Scholar 

  • Melvin T M, Briffa K R. 2008. A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia, 26: 71–86

    Article  Google Scholar 

  • Melvin T M, Briffa K R. 2014. CRUST: Software for the implementation of regional chronology standardisation: Part 1. Signal-Free RCS. Dendrochronologia, 32: 7–20

    Article  Google Scholar 

  • Mosley-Thompson E, Thompson L G, Dai J, Davis M, Lin P N. 1993. Climate of the last 500 years: High resolution ice core records. Quat Sci Rev, 12: 419–430

    Article  Google Scholar 

  • Pederson N, Hessl A E, Baatarbileg N, Anchukaitis K J, Di Cosmo N. 2014. Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proc Natl Acad Sci USA, 111: 4275–4379

    Google Scholar 

  • Qin C, Yang B, Melvin T M, Fan Z, Zhao Y, Briffa K R. 2013. Radial growth of Qilian Juniper on the Northeast Tibetan Plateau and potential climate associations. PLoS ONE, 8: e79362

    Article  Google Scholar 

  • Shao X, Liang E, Huang L, Wang L. 2005. A 1437-year precipitation history from Qilian juniper in the northeastern Qinghai-Tibetan Plateau. PAGES news, 13: 14–15

    Article  Google Scholar 

  • Shao X, Xu Y, Yin Z Y, Liang E, Zhu H, Wang S. 2010. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau. Quat Sci Rev, 29: 2111–2122

    Article  Google Scholar 

  • Sheppard P R, Tarasov P E, Graumlich L J, Heussner K U, Wagner M, wsterle H, Thompson L G. 2004. Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China. Clim Dyn, 23: 869–881

    Article  Google Scholar 

  • Tian Q, Gou X, Zhang Y, Peng J, Wang J, Chen T. 2007. Tree-Ring Based Drought Reconstruction (AD 1855–2001) for the Qilian Mountains, Northwestern China. Tree-Ring Res, 63: 27–36

    Article  Google Scholar 

  • van der Schrier G, Barichivich J, Briffa K R, Jones P D. 2013. A scPDSIbased global data set of dry and wet spells for 1901–2009. J Geophys Res-Atmos, 118: 4025–4048

    Article  Google Scholar 

  • Wang J, Yang B, Ljungqvist F C, Luterbacher J, Osborn T J, Briffa K R, Zorita E. 2017. Internal and external forcing of multidecadal Atlantic climate variability over the past 1200 years. Nat Geosci, 10: 512–517

    Article  Google Scholar 

  • Wang J, Yang B, Qin C, Kang S, He M, Wang Z. 2014. Tree-ring inferred annual mean temperature variations on the southeastern Tibetan Plateau during the last millennium and their relationships with the Atlantic Multidecadal Oscillation. Clim Dyn, 43: 627–640

    Article  Google Scholar 

  • Wang W Z, Liu X H, Xu G B, Shao X M, Qin D H, Sun W Z, An W L, Zeng X M. 2013. Moisture variations over the past millennium characterized by Qaidam Basin tree-ring d18O. Chin Sci Bull, 58: 3956–3961

    Article  Google Scholar 

  • Wang Z, Yang B, Deslauriers A, Bräuning A. 2015. Intra-annual stem radial increment response of Qilian juniper to temperature and precipitation along an altitudinal gradient in northwestern China. Trees, 29: 25–34

    Article  Google Scholar 

  • Wang Z, Yang B, Deslauriers A, Qin C, He M, Shi F, Liu J. 2012. Two phases of seasonal stem radius variations of Sabina przewalskii Kom. in northwestern China inferred from sub-diurnal shrinkage and expansion patterns. Trees, 26: 1747–1757

    Article  Google Scholar 

  • Wigley T M L, Briffa K R, Jones P D. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol, 23: 201–213

    Article  Google Scholar 

  • Wilson R, Anchukaitis K, Briffa K R, Büntgen U, Cook E, D’Arrigo R, Davi N, Esper J, Frank D, Gunnarson B, Hegerl G, Helama S, Klesse S, Krusic P J, Linderholm H W, Myglan V, Osborn T J, Rydval M, Schneider L, Schurer A, Wiles G, Zhang P, Zorita E. 2016. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quat Sci Rev, 134: 1–18

    Article  Google Scholar 

  • Wu Z, Huang N E. 2009. Ensemble empirical mode decomposition: A noise assisted data analysis method. Adv Adapt Data Anal, 01: 1–41

    Article  Google Scholar 

  • Xu G, Yao H, Dong A. 1997. Climate Change in Arid and Semiarid Regions of China (in Chinese). Beijing: China Meteorological Press. 1–101

    Google Scholar 

  • Yang B, Bräuning A, Johnson K R, Shi Y. 2002. General characteristics of temperature variation in China during the last two millennia. Geophys Res Lett, 29: 1324

    Google Scholar 

  • Yang B, He M, Melvin T M, Zhao Y, Briffa K R. 2013. Climate control on tree growth at the upper and lower treelines: A case study in the qilian mountains, Tibetan Plateau. PLoS ONE, 8: e69065

    Article  Google Scholar 

  • Yang B, He M, Shishov V, Tychkov I, Vaganov E, Roßsi S, Ljungqvist F C, Bräuning A, Grießinger J. 2017a. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc Natl Acad Sci USA, 114: 6966–6971

    Article  Google Scholar 

  • Yang B, Qin C, Bräuning A, Burchardt I, Liu J. 2011. Rainfall history for the Hexi Corridor in the arid northwest China during the past 620 years derived from tree rings. Int J Climatol, 31: 1166–1176

    Article  Google Scholar 

  • Yang B, Qin C, Wang J, He M, Melvin T M, Osborn T J, Briffa K R. 2014. A 3500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proc Natl Acad Sci USA, 111: 2903–2908

    Article  Google Scholar 

  • Yang B, Sonechkin D M, Datsenko N M, Liu J, Qin C. 2017b. Establishment of a 4650-year-long eigenvalue chronology based on tree-ring cores from Qilian junipers (Juniperus przewalskii Kom.) in Western China. Dendrochronologia, 46: 56–66

    Article  Google Scholar 

  • Yin Z Y, Zhu H, Huang L, Shao X. 2016. Reconstruction of biological drought conditions during the past 2847 years in an alpine environment of the northeastern Tibetan Plateau, China, and possible linkages to solar forcing. Glob Planet Change, 143: 214–227

    Article  Google Scholar 

  • Zhang P, Cheng H, Edwards R L, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Liu J, An C, Dai Z, Zhou J, Zhang D, Jia J, Jin L, Johnson K R. 2008. A test of climate, sun, and culture relationships from an 1810- year chinese cave record. Science, 322: 940–942

    Article  Google Scholar 

  • Zhang Q B, Cheng G, Yao T, Kang X and Hu ang J. 2003. A 2,326-year tree-ring record of climate variability on the northeastern Qinghai-Tibetan Plateau. Geophys Res Lett, 30: 1739–1742

    Google Scholar 

  • Zhang Q B, Evans M N, Lyu L. 2015. Moisture dipole over the Tibetan Plateau during the past five and a half centuries. Nat Commun, 6: 8062

    Article  Google Scholar 

  • Zhang Y, Shao X, Yin Z, Liang E, Tian Q, Xu Y. 2011. Characteristics of extreme droughts inferred from tree-ring data in the Qilian Mountains, 1700–2005. Clim Res, 50: 141–159

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers who helped to improve the manuscript with insightful comments. This study was supported by the National Key R & D Program of China (Grant No. 2017YFA0603302), the National Natural Science Foundation of China (Grant Nos. 41520104005, 41602192, 41325008 & 41402157), and the Belmont Forum and JPI-Climate Collaborative Research Action ‘INTEGRATE’ (Grant No. 41661144008). Jianglin Wang also acknowledges the support of the Innovation Promotion Association Foundation of CAS, and the CAS “West Light” Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Wang, J. & Liu, J. A 1556 year-long early summer moisture reconstruction for the Hexi Corridor, Northwestern China. Sci. China Earth Sci. 62, 953–963 (2019). https://doi.org/10.1007/s11430-018-9327-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9327-1

Keywords

Navigation