Skip to main content
Log in

Increased water vapor supply in winter and spring leading to the arid Central Asian wetting in last 6000 years

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Paleoclimate reconstructions show that the arid Central Asia (ACA) is characterized by a wetting trend from the mid-Holocene (MH) to the Preindustrial period (PI), which has been acknowledged to be a result of increased mean precipitation. However, a systemic understanding of its governing dynamics remains elusive. Based on model outputs from 13 climate models from the Paleoclimate Model Intercomparison Project phase 4 (PMIP4) and proxy records from ACA, here we show that increase in mean precipitation in ACA can be attributed to changes in water vapor source and its transport intensity in winter (December, January, and February) and spring (March, April, and May). In particular, the increase in water vapor supply in winter is associated with the southerly wind anomaly over the northwestern Indian Ocean and Central Asia, caused by an overall weakening of the Asian winter monsoon. This is conducive to water vapor transport from the upwind regions (e.g., Mediterranean) to ACA. Meanwhile, water vapor supply from the eastern Iceland is also enhanced due to a negative North Atlantic Oscillation-like (NAO-like) atmospheric circulation pattern caused by sea ice expansion in the North Atlantic. In spring, evaporation over land and inland lakes is enhanced by increased insolation in the Northern Hemisphere, which increases atmospheric humidity that fuels midlatitude westerlies to enhance ACA precipitation. In addition, weakened atmospheric subsidence over ACA in winter and spring also contributes to the increased precipitation. Overall, our results indicate that paleoclimate modeling is of great importance for disentangling governing dynamics accounting for reconstructed climate phenomena that might be a synergic consequence of several processes operating in different seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizen E M, Aizen V B, Melack J M, Nakamura T, Ohta T. 2001. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int J Climatol, 21: 535–556

    Article  Google Scholar 

  • An C B, Lu Y B, Zhao J J, Tao S C, Dong W M, Li H, Jin M, Wang Z L. 2012. A high-resolution record of Holocene environmental and climatic changes from Lake Balikun (Xinjiang, China): Implications for Central Asia. Holocene, 22: 43–52

    Article  Google Scholar 

  • Berger A L. 1978. Long-term variations of daily insolation and quaternary climatic changes. J Atmos Sci, 35: 2362–2367

    Article  Google Scholar 

  • Blyakharchuk T A, Wright H E, Borodavko P S, van der Knaap W O, Ammann B. 2007. Late Glacial and Holocene vegetational history of the Altai Mountains (southwestern Tuva Republic, Siberia). Palaeogeogr Palaeoclimatol Palaeoecol, 245: 518–534

    Article  Google Scholar 

  • Böhner J. 2006. General climatic controls and topoclimatic variations in Central and High Asia. Boreas, 35: 279–295

    Article  Google Scholar 

  • Boucher O, Servonnat J, Albright A L, Aumont O, Balkanski Y, Bastrikov V, Bekki S, Bonnet R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Caubel A, Cheruy F, Codron F, Cozic A, Cugnet D, D’Andrea F, Davini P, Lavergne C, Denvil S, Deshayes J, Devilliers M, Ducharne A, Dufresne J L, Dupont E, Éthé C, Fairhead L, Falletti L, Flavoni S, Foujols M A, Gardoll S, Gastineau G, Ghattas J, Grandpeix J Y, Guenet B, Guez L E, Guilyardi E, Guimberteau M, Hauglustaine D, Hourdin F, Idelkadi A, Joussaume S, Kageyama M, Khodri M, Krinner G, Lebas N, Levavasseur G, Lévy C, Li L, Lott F, Lurton T, Luyssaert S, Madec G, Madeleine J B, Maignan F, Marchand M, Marti O, Mellul L, Meurdesoif Y, Mignot J, Musat I, Ottlé C, Peylin P, Planton Y, Polcher J, Rio C, Rochetin N, Rousset C, Sepulchre P, Sima A, Swingedouw D, Thiéblemont R, Traore A K, Vancoppenolle M, Vial J, Vialard J, Viovy N, Vuichard N. 2020. Presentation and evaluation of the IPSL-CM6A-LR. J Adv Model Earth Syst, 12: e2019MS002010

    Article  Google Scholar 

  • Cai Y J, Chiang J C H, Breitenbach S F M, Tan L C, Cheng H, Edwards R L, An Z S. 2017. Holocene moisture changes in western China, Central Asia, inferred from stalagmites. Quat Sci Rev, 158: 15–28

    Article  Google Scholar 

  • Cao J, Wang B, Yang Y M, Ma L B, Li J, Sun B, Bao Y, He J, Zhou X, Wu L G. 2018. The NUIST earth system model (NESM) version 3: Description and preliminary evaluation. Geosci Model Dev, 11: 2975–2993

    Article  Google Scholar 

  • Carlson A E, Clark P U. 2012. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev Geophys, 50: RG4007

    Article  Google Scholar 

  • Carlson A E, Legrande A N, Oppo D W, Came R E, Schmidt G A, Anslow F S, Licciardi J M, Obbink E A. 2008. Rapid early Holocene deglaciation of the Laurentide Ice Sheet. Nat Geosci, 1: 620–624

    Article  Google Scholar 

  • Chen F H, Chen J H, Holmes J, Boomer I, Austin P, Gates J B, Wang N L, Brooks S J, Zhang J W. 2010. Moisture changes over the last millennium in arid Central Asia: A review, synthesis and comparison with monsoon region. Quat Sci Rev, 29: 1055–1068

    Article  Google Scholar 

  • Chen F H, Chen J H, Huang W, Chen S Q, Huang X Z, Jin L Y, Jia J, Zhang X J, An C B, Zhang J W, Zhao Y, Yu Z C, Zhang R H, Liu J B, Zhou A F, Feng S. 2019. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales. Earth-Sci Rev, 192: 337–354

    Article  Google Scholar 

  • Chen F H, Chen J H, Huang W. 2009. A discussion on the westerly-dominated climate model in mid-latitude Asia during the modern interglacial period (in Chinese). Earth Sci Front, 16: 23–32

    Article  Google Scholar 

  • Chen F H, Jia J, Chen J H, Li G Q, Zhang X J, Xie H C, Xia D S, Huang W, An C B. 2016. A persistent Holocene wetting trend in arid Central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China. Quat Sci Rev, 146: 134–146

    Article  Google Scholar 

  • Chen F H, Yu Z C, Yang M L, Ito E, Wang S M, Madsen D B, Huang X Z, Zhao Y, Sato T, Birks H J B, Boomer I, Chen J H, An C B, Wünnemann B. 2008. Holocene moisture evolution in arid Central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27: 351–364

    Article  Google Scholar 

  • Chen G S, Kutzbach J E, Gallimore R, Liu Z. 2011. Calendar effect on phase study in paleoclimate transient simulation with orbital forcing. Clim Dyn, 37: 1949–1960

    Article  Google Scholar 

  • Chen S Q, Chen J H, Lv F Y, Liu X K, Hou J Z, Chen F H. 2022. Holocene moisture variation in arid Central Asia: Reassessment and reconciliation. (submitted)

  • Cheng H, Spötl C, Breitenbach S F M, Sinha A, Wassenburg J A, Jochum K P, Scholz D, Li X L, Yi L, Peng Y B, Lv Y B, Zhang P Z, Votintseva A, Loginov V, Ning Y F, Kathayat G, Edwards R L. 2016. Climate variations of Central Asia on orbital to millennial timescales. Sci Rep, 6: 36975

    Article  Google Scholar 

  • D’Arrigo R, Jacoby G, Pederson N, Frank D, Buckley B, Nachin B, Mijiddorj R, Dugarjav C. 2000. Mongolian tree-rings, temperature sensitivity and reconstructions of Northern Hemisphere temperature. Holocene, 10: 669–672

    Article  Google Scholar 

  • Danabasoglu G, Lamarque J-, Bacmeister J, Bailey D A, DuVivier A K, Edwards J, Emmons L K, Fasullo J, Garcia R, Gettelman A, Hannay C, Holland M M, Large W G, Lauritzen P H, Lawrence D M, Lenaerts J T M, Lindsay K, Lipscomb W H, Mills M J, Neale R, Oleson K W, Otto-Bliesner B, Phillips A S, Sacks W, Tilmes S, Kampenhout L, Vertenstein M, Bertini A, Dennis J, Deser C, Fischer C, Fox-Kemper B, Kay J E, Kinnison D, Kushner P J, Larson V E, Long M C, Mickelson S, Moore J K, Nienhouse E, Polvani L, Rasch P J, Strand W G. 2020. The community earth system model version 2 (CESM2). J Adv Model Earth Syst, 12: e2019MS001916

    Article  Google Scholar 

  • Davis B A S, Brewer S, Stevenson A C, Guiot J. 2003. The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev, 22: 1701–1716

    Article  Google Scholar 

  • Feng Z D, Sun A Z, Abdusalih N, Ran M, Kurban A, Lan B, Zhang D L, Yang Y P. 2017. Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene. Holocene, 27: 683–693

    Article  Google Scholar 

  • Ferronskii V I, Polyakov V A, Brezgunov V S, Vlasova L S, Karpychev Y A, Bobkov A F, Romaniovskii V V, Johnson T, Ricketts D, Rasmussen K. 2003. Variations in the hydrological regime of Kara-Bogaz-Gol Gulf, Lake Issyk-Kul, and the Aral Sea assessed based on data of bottom sediment studies. Water Resources, 30: 252–259

    Article  Google Scholar 

  • Gasse F, Arnold M, Fontes J C, Fort M, Gibert E, Huc A, Li B Y, Li Y F, Li Q, Mélières F, Campo E V, Wang F B, Zhang Q S. 1991. A 13,000-year climate record from western Tibet. Nature, 353: 742–745

    Article  Google Scholar 

  • Guan X F, Yang L M, Zhang Y X, Li J G. 2019. Spatial distribution, temporal variation, and transport characteristics of atmospheric water vapor over Central Asia and the arid region of China. Glob Planet Change, 172: 159–178

    Article  Google Scholar 

  • Guo C C, Bentsen M, Bethke I, Ilicak M, Tjiputra J, Toniazzo T, Schwinger J, Otterå O H. 2019. Description and evaluation of NorESM1-F: A fast version of the Norwegian Earth System Model (NorESM). Geosci Model Dev, 12: 343–362

    Article  Google Scholar 

  • He B, Bao Q, Wang X C, Zhou L J, Wu X F, Liu Y M, Wu G X, Chen K J, He S C, Hu W T, Li J D, Li J X, Nian G K, Wang L, Yang J, Zhang M H, Zhang X Q. 2019. CAS FGOALS-f3-L model datasets for CMIP6 historical atmospheric model intercomparison project simulation. Adv Atmos Sci, 36: 771–778

    Article  Google Scholar 

  • Hong B, Gasse F, Uchida M, Hong Y T, Leng X T, Shibata Y, An N, Zhu Y X, Wang Y. 2014. Increasing summer rainfall in arid eastern-Central Asia over the past 8500 years. Sci Rep, 4: 5279

    Article  Google Scholar 

  • Huang W, Chen F H, Feng S, Chen J H, Zhang X J. 2013. Interannual precipitation variations in the mid-latitude Asia and their association with large-scale atmospheric circulation. Chin Sci Bull, 58: 3962–3968

    Article  Google Scholar 

  • Huang X Z, Chen F H, Fan Y X, Yang M L. 2009. Dry late-glacial and early Holocene climate in arid Central Asia indicated by lithological and palynological evidence from Bosten Lake, China. Quat Int, 194: 19–27

    Article  Google Scholar 

  • Huang X Z, Peng W, Rudaya N, Grimm E C, Chen X M, Cao X Y, Zhang J, Pan X D, Liu S S, Chen C Z, Chen F H. 2018. Holocene vegetation and climate dynamics in the Altai Mountains and Surrounding Areas. Geophys Res Lett, 45: 6628–6636

    Article  Google Scholar 

  • Indermuhle A, Stauffer B, Stocker T F, Raynaud D, Barnola J M. 1999. Early Holocene atmospheric CO2 concentrations. Science, 286: 1815

    Article  Google Scholar 

  • Jiang Q F, Ji J F, Shen J, Matsumoto R, Tong G B, Qian P, Ren X M, Yan D Z. 2013. Holocene vegetational and climatic variation in westerly-dominated areas of Central Asia inferred from the Sayram Lake in northern Xinjiang, China. Sci China Earth Sci, 56: 339–353

    Article  Google Scholar 

  • Jin L Y, Chen F H, Morrill C, Otto-Bliesner B L, Rosenbloom N. 2012. Causes of early Holocene desertification in arid Central Asia. Clim Dyn, 38: 1577–1591

    Article  Google Scholar 

  • Joussaume S, Braconnot P. 1997. Sensitivity of paleoclimate simulation results to season definitions. J Geophys Res, 102: 1943–1956

    Article  Google Scholar 

  • Kelley M, Schmidt G A, Nazarenko L S, Bauer S E, Ruedy R, Russell G L, Ackerman A S, Aleinov I, Bauer M, Bleck R, Canuto V, Cesana G, Cheng Y, Clune T L, Cook B I, Cruz C A, Del Genio A D, Elsaesser G S, Faluvegi G, Kiang N Y, Kim D, Lacis A A, Leboissetier A, LeGrande A N, Lo K K, Marshall J, Matthews E E, McDermid S, Mezuman K, Miller R L, Murray L T, Oinas V, Orbe C, García-Pando C P, Perlwitz J P, Puma M J, Rind D, Romanou A, Shindell D T, Sun S, Tausnev N, Tsigaridis K, Tselioudis G, Weng E, Wu J, Yao M S. 2020. GISS-E2.1: Configurations and climatology. J Adv Model Earth Syst, 12: e2019MS002025

    Article  Google Scholar 

  • Krivonogov S K, Kuzmin Y V, Burr G S, Gusskov S A, Khazin L B, Zhakov E Y, Nurgizarinov A N, Kurmanbaev R K, Kenshinbay T I. 2010. Environmental changes of the Aral Sea (Central Asia) in the Holocene: Major trends. Radiocarbon, 52: 555–568

    Article  Google Scholar 

  • Kutzbach J E, Chen G, Cheng H, Edwards R L, Liu Z. 2014. Potential role of winter rainfall in explaining increased moisture in the Mediterranean and Middle East during periods of maximum orbitally-forced insolation seasonality. Clim Dyn, 42: 1079–1095

    Article  Google Scholar 

  • Kutzbach J E, Liu X D, Liu Z Y, Chen G S. 2008. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years. Clim Dyn, 30: 567–579

    Article  Google Scholar 

  • Kutzbach J E, Otto-Bliesner B L. 1982. The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years B. P. in a low-resolution general circulation model. J Atmos Sci, 39: 1177–1188

    Article  Google Scholar 

  • Leroy S A G, López-Merino L, Tudryn A, Chalié F, Gasse F. 2014. Late Pleistocene and Holocene palaeoenvironments in and around the middle Caspian basin as reconstructed from a deep-sea core. Quat Sci Rev, 101: 91–110

    Article  Google Scholar 

  • Li J P, Wang J X L. 2003. A modified zonal index and its physical sense. Geophys Res Lett, 30: 1632

    Google Scholar 

  • Li J Y, Wang N L, Dodson J, Yan H, Zhang X J, Jia P W, Seppa H. 2020. Holocene negative coupling of summer temperature and moisture availability over southeastern arid Central Asia. Clim Dyn, 55: 1187–1208

    Article  Google Scholar 

  • Li L J, Yu Y Q, Tang Y L, Lin P F, Xie J B, Song M R, Dong L, Zhou T J, Liu L, Wang L, Pu Y, Chen X L, Chen L, Xie Z H, Liu H B, Zhang L X, Huang X, Feng T, Zheng W P, Xia K, Liu H L, Liu J P, Wang Y, Wang L H, Jia B H, Xie F, Wang B, Zhao S W, Yu Z P, Zhao B W, Wei J L. 2020. The flexible global ocean-atmosphere-land system model grid-point version 3 (FGOALS-g3): Description and evaluation. J Adv Model Earth Syst, 12: e02012

    Google Scholar 

  • Liu C L, Zhang J F, Jiao P C, Mischke S. 2016. The Holocene history of Lop Nur and its palaeoclimate implications. Quat Sci Rev, 148: 163–175

    Article  Google Scholar 

  • Liu X K, Liu J B, Shen C C, Yang Y, Chen J H, Chen S Q, Wang X F, Wu C C, Chen F H. 2020. Inconsistency between records of δ18O and trace element ratios from stalagmites: Evidence for increasing mid-late Holocene moisture in arid central Asia. Holocene, 30: 369–379

    Article  Google Scholar 

  • Liu X K, Rao Z G, Shen C C, Liu J B, Chen J H, Chen S Q, Wang X F, Chen F H. 2019. Holocene solar activity imprint on centennial- to multidecadal-scale hydroclimatic oscillations in arid Central Asia. J Geophys Res-Atmos, 124: 2562–2573

    Article  Google Scholar 

  • Liu X Q, Herzschuh U, Shen J, Jiang Q F, Xiao X Y. 2008. Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quat Res, 70: 412–425

    Article  Google Scholar 

  • Liu Z Y, Wen X Y, Brady E C, Otto-Bliesner B, Yu G, Lu H Y, Cheng H, Wang Y J, Zheng W P, Ding Y H, Edwards R L, Cheng J, Liu W, Yang H. 2014. Chinese cave records and the East Asia Summer Monsoon. Quat Sci Rev, 83: 115–128

    Article  Google Scholar 

  • Liu Z, Otto-Bliesner B L, He F, Brady E C, Tomas R, Clark P U, Carlson A E, Lynch-Stieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Cheng J. 2009. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science, 325: 310–314

    Article  Google Scholar 

  • Long H, Shen J, Chen J, Tsukamoto S, Yang L, Cheng H, Frechen M. 2017. Holocene moisture variations over the arid Central Asia revealed by a comprehensive sand-dune record from the central Tian Shan, NW China. Quat Sci Rev, 174: 13–32

    Article  Google Scholar 

  • Lorenz S J, Kim J H, Rimbu N, Schneider R R, Lohmann G. 2006. Orbitally driven insolation forcing on Holocene climate trends: Evidence from alkenone data and climate modeling. Paleoceanography, 21: PA1002

    Article  Google Scholar 

  • Loulergue L, Schilt A, Spahni R, Masson-Delmotte V, Blunier T, Lemieux B, Barnola J M, Raynaud D, Stocker T F, Chappellaz J. 2008. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature, 453: 383–386

    Article  Google Scholar 

  • Mauritsen T, Bader J, Becker T, Behrens J, Bittner M, Brokopf R, Brovkin V, Claussen M, Crueger T, Esch M, Fast I, Fiedler S, Fläschner D, Gayler V, Giorgetta M, Goll D S, Haak H, Hagemann S, Hedemann C, Hohenegger C, Ilyina T, Jahns T, Jimenéz-de-la-Cuesta D, Jungclaus J, Kleinen T, Kloster S, Kracher D, Kinne S, Kleberg D, Lasslop G, Kornblueh L, Marotzke J, Matei D, Meraner K, Mikolajewicz U, Modali K, Möbis B, Müller W A, Nabel J E M S, Nam C C W, Notz D, Nyawira S S, Paulsen H, Peters K, Pincus R, Pohlmann H, Pongratz J, Popp M, Raddatz T J, Rast S, Redler R, Reick C H, Rohrschneider T, Schemann V, Schmidt H, Schnur R, Schulzweida U, Six K D, Stein L, Stemmler I, Stevens B, von Storch J S, Tian F, Voigt A, Vrese P, Wieners K H, Wilkenskjeld S, Winkler A, Roeckner E. 2019. Developments in the MPI-M Earth system model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J Adv Model Earth Syst, 11: 998–1038

    Article  Google Scholar 

  • Monnin E, Steig E J, Siegenthaler U, Kawamura K, Schwander J, Stauffer B, Stocker T F, Morse D L, Barnola J M, Bellier B, Raynaud D, Fischer H. 2004. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth Planet Sci Lett, 224: 45–54

    Article  Google Scholar 

  • Montoya M, von Storch H, Crowley T J. 2000. Climate simulation for 125 kyr BP with a coupled ocean-atmosphere general circulation model. J Clim, 13: 1057–1072

    Article  Google Scholar 

  • Olsen J, Anderson N J, Knudsen M F. 2012. Variability of the North Atlantic Oscillation over the past 5,200 years. Nat Geosci, 5: 808–812

    Article  Google Scholar 

  • Orme L C, Miettinen A, Seidenkrantz M S, Tuominen K, Pearce C, Divine D V, Oksman M, Kuijpers A. 2021. Mid to late-Holocene sea-surface temperature variability off north-eastern Newfoundland and its linkage to the North Atlantic Oscillation. Holocene, 31: 3–15

    Article  Google Scholar 

  • Prell W L, Kutzbach J E. 1987. Monsoon variability over the past 150,000 years. J Geophys Res, 92: 8411–8425

    Article  Google Scholar 

  • Rackow T, Goessling H F, Jung T, Sidorenko D, Semmler T, Barbi D, Handorf D. 2018. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: Climate variability. Clim Dyn, 50: 2369–2394

    Article  Google Scholar 

  • Rasmussen K A, Ricketts R D, Johnson T C, Romanovsky V V, Grigina O M. 2001. An 8,000 year multi-proxy record from Lake Issyk-Kul, Kyrgyzstan. PAGES News, 9: 5–6

    Article  Google Scholar 

  • Ricketts R D, Johnson T C, Brown E T, Rasmussen K A, Romanovsky V V. 2001. The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: Trace element and stable isotope composition of ostracodes. Palaeogeogr Palaeoclimatol Palaeoecol, 176: 207–227

    Article  Google Scholar 

  • Rimbu N, Lohmann G, Kim J H, Arz H W, Schneider R. 2003. Arctic/North Atlantic Oscillation signature in Holocene sea surface temperature trends as obtained from alkenone data. Geophys Res Lett, 30: 1280

    Article  Google Scholar 

  • Rimbu N, Lohmann G, Lorenz S J, Kim J H, Schneider R R. 2004. Holocene climate variability as derived from alkenone sea surface temperature and coupled ocean-atmosphere model experiments. Clim Dyn, 23: 215–227

    Article  Google Scholar 

  • Ruddiman W F. 2007. Earth’s Climate, Past, Future. 2nd ed. New York: W. H. Freeman and Company. 484

    Google Scholar 

  • Seland Ø, Bentsen M, Olivié D, Toniazzo T, Gjermundsen A, Graff L S, Debernard J B, Gupta A K, He Y C, Kirkevåg A, Schwinger J, Tjiputra J, Aas K S, Bethke I, Fan Y, Griesfeller J, Grini A, Guo C, Ilicak M, Karset I H H, Landgren O, Liakka J, Moseid K O, Nummelin A, Spensberger C, Tang H, Zhang Z, Heinze C, Iversen T, Schulz M. 2020. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci Model Dev, 13: 6165–6200

    Article  Google Scholar 

  • Sidorenko D, Rackow T, Jung T, Semmler T, Barbi D, Danilov S, Dethloff K, Dorn W, Fieg K, Goessling H F, Handorf D, Harig S, Hiller W, Juricke S, Losch M, Schröter J, Sein D V, Wang Q. 2015. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part I: Model formulation and mean climate. Clim Dyn, 44: 757–780

    Article  Google Scholar 

  • Sorg A, Bolch T, Stoffel M, Solomina O, Beniston M. 2012. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat Clim Change, 2: 725–731

    Article  Google Scholar 

  • Sun A Z, Feng Z D, Ran M, Zhang C J. 2013. Pollen-recorded bioclimatic variations of the last ∼22,600 years retrieved from Achit Nuur core in the western Mongolian Plateau. Quat Int, 311: 36–43

    Article  Google Scholar 

  • Tao S C, An C B, Chen F H, Tang L Y, Wang Z L, Lü Y B, Li Z F, Zheng T M, Zhao J J. 2010. Pollen-inferred vegetation and environmental changes since 16.7 ka BP at Balikun Lake, Xinjiang. Chin Sci Bull, 55: 2449–2457

    Article  Google Scholar 

  • Tian F, Herzschuh U, Telford R J, Mischke S, Van der Meeren T, Krengel M. 2014. A modern pollen-climate calibration set from central-western Mongolia and its application to a late glacial-Holocene record. J Biogeogr, 41: 1909–1922

    Article  Google Scholar 

  • Volodin E M, Mortikov E V, Kostrykin S V, Galin V Y, Lykossov V N, Gritsun A S, Diansky N A, Gusev A V, Iakovlev N G, Shestakova A A, Emelina S V. 2018. Simulation of the modern climate using the INM-CM48 climate model. Rus J Numer Anal Math Model, 33: 367–374

    Article  Google Scholar 

  • Wang Q, Wei H T, Khormali F, Wang L B, Yan H Y, Xie H C, Wang X, Huang W, Chen J H, Chen F H. 2020. Holocene moisture variations in western arid Central Asia inferred from loess records from NE Iran. Geochem Geophys Geosyst, 21: e08616

    Google Scholar 

  • Wang W, Feng Z D, Ran M, Zhang C J. 2013. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-central Asia. Quat Int, 311: 54–62

    Article  Google Scholar 

  • Wang W, Feng Z D. 2013. Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: A synthesis of climatic records. Earth-Sci Rev, 122: 38–57

    Article  Google Scholar 

  • Wang W, Zhang D L. 2019. Holocene vegetation evolution and climatic dynamics inferred from an Ombrotrophic Peat sequence in the southern Altai Mountains within China. Glob Planet Change, 179: 10–22

    Article  Google Scholar 

  • Wu Z P, Yin Q Z, Guo Z T, Berger A. 2020. Hemisphere differences in response of sea surface temperature and sea ice to precession and obliquity. Glob Planet Change, 192: 103223

    Article  Google Scholar 

  • Wünnemann B, Mischke S, Chen F H. 2006. A Holocene sedimentary record from Bosten Lake, China. Palaeogeogr Palaeoclimatol Palaeoecol, 234: 223–238

    Article  Google Scholar 

  • Xie T T, Huang W, Feng S, Wang T, Liu Y, Chen J H, Chen F H. 2021. Mechanism of winter precipitation variations in the southern arid Central Asia. Int J Climatol, https://doi.org/10.1002/joc.7480

  • Xu H N, Wang T, Wang H J, Miao J P, Chen J H, Chen S Q. 2020. The PMIP3 simulated climate changes over Arid Central Asia during the Mid-Holocene and Last Glacial Maximum. Acta Geol Sin-Engl Ed, 94: 725–742

    Article  Google Scholar 

  • Xu H, Zhou K E, Lan J H, Zhang G L, Zhou X Y. 2019. Arid Central Asia saw mid-Holocene drought. Geology, 47: 255–258

    Article  Google Scholar 

  • Yuan X, Shi Z G, Zhou W J. 2014. North Atlantic Oscillation changes and its relationship with Asian precipitation in mid-Holocene and last glacial maximum: Results from MPI-ESM simulations (in Chinese). Quat Sci, 34: 1156–1156

    Google Scholar 

  • Yukimoto S, Kawai H, Koshiro T, Oshima N, Yoshida K, Urakawa S, Tsujino H, Deushi M, Tanaka T, Hosaka M, Yabu S, Yoshimura H, Shindo E, Mizuta R, Obata A, Adachi Y, Ishii M. 2019. The meteorological research institute earth system model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J Meteorol Soc Jpn, 97: 931–965

    Article  Google Scholar 

  • Zhang D L, Chen X, Li Y M, Ran M, Yang Y P, Zhang S R, Feng Z D. 2020. Holocene moisture variations in the Arid Central Asia: New evidence from the southern Altai Mountains of China. Sci Total Environ, 735: 139545

    Article  Google Scholar 

  • Zhang D L, Feng Z D. 2018. Holocene climate variations in the Altai Mountains and the surrounding areas: A synthesis of pollen records. Earth-Sci Rev, 185: 847–869

    Article  Google Scholar 

  • Zhang Q, Berntell E, Axelsson J, Chen J, Han Z, de Nooijer W, Lu Z, Li Q, Zhang Q, Wyser K, Yang S. 2021. Simulating the mid-Holocene, last interglacial and mid-Pliocene climate with EC-Earth3-LR. Geosci Model Dev, 14: 1147–1169

    Article  Google Scholar 

  • Zhang X J. 2021. Penetration of monsoonal water vapour into arid Central Asia during the Holocene: An isotopic perspective. Quat Sci Rev, 251: 106713

    Article  Google Scholar 

  • Zhang X J, Jin L Y, Chen J, Chen F H, Park W, Schneider B, Latif M. 2017. Detecting the relationship between moisture changes in arid Central Asia and East Asia during the Holocene by model-proxy comparison. Quat Sci Rev, 176: 36–50

    Article  Google Scholar 

  • Zhang X J, Jin L Y, Huang W, Chen F H. 2016. Forcing mechanisms of orbital-scale changes in winter rainfall over northwestern China during the Holocene. Holocene, 26: 549–555

    Article  Google Scholar 

  • Zhang X J, Jin L Y, Yu F, Wang Z Y. 2010. Mid-Holocene NAO: Based on PMIP2 model simulations (in Chinese). Acta Oceanol Sin, 32: 41–50

    Google Scholar 

  • Zhang Y, Meyers P A, Liu X T, Wang G P, Ma X H, Li X Y, Yuan Y X, Wen B L. 2016. Holocene climate changes in the Central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China. Quat Sci Rev, 152: 19–30

    Article  Google Scholar 

  • Zhang Y, Yang P, Tong C, Liu X T, Zhang Z Q, Wang G P, Meyers P A. 2018. Palynological record of Holocene vegetation and climate changes in a high-resolution peat profile from the Xinjiang Altai Mountains, northwestern China. Quat Sci Rev, 201: 111–123

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the International Climate Modeling Group for the analytical data and two anonymous reviewers for their comments and suggestions. This work was supported by the National Program on Key Basic Research Project of China (Grant No. 2018YFA0606403)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, B., Chen, S. et al. Increased water vapor supply in winter and spring leading to the arid Central Asian wetting in last 6000 years. Sci. China Earth Sci. 65, 1353–1367 (2022). https://doi.org/10.1007/s11430-021-9921-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9921-7

Keywords

Navigation