Skip to main content
Log in

Clay mineral assemblages of the oceanic red beds in the northern South China Sea and their responses to the Middle Miocene Climate Transition

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Middle Miocene Climate Transition (MMCT, ∼14 Ma) is the largest cooling event in the Cenozoic “Coolhouse”, which significantly impacts the global chemical weathering pattern. In this paper, the responses of the MMCT global cooling event in the deep South China Sea were studied by clay mineral assemblages analysis of the oceanic red beds (ORB) at International Ocean Discovery Program (IODP) Expedition 368 Site U1502. The results show that the clay mineral assemblages of the ORB at Site U1502 are mainly composed of smectite (56–88%), illite (7–29%), and kaolinite (6–20%), without chlorite. The contents of these clay minerals and illite crystallinity show a four-stage variation pattern during early-middle Miocene (22.8−10.8 Ma). Smectite decreased from average 81% during 22.8–16.2 Ma and 16.2–14.4 Ma to average 67% during 13.8–10.8 Ma, with a rapid decrease of ∼14% during 14.4–13.8 Ma. On the contrary, illite and kaolinite increased rapidly by ∼8% and ∼6%, respectively, during 14.4–13.8 Ma. Illite crystallinity increased from average 0.18°Δ2θ during 22.8–16.2 Ma to average 0.19°Δ2θ during 16.2–14.4 Ma, and then decreased rapidly by ∼0.02°Δ2θ during 14.4–13.8 Ma. The provenance analysis of clay minerals shows that illite and kaolinite mainly originated from South China landmass due to physical erosion, while smectite mainly came from the Luzon arc as the product of chemical weathering. Therefore, smectite/illite ratio and illite crystallinity are used as proxies of chemical weathering intensity in the early-middle Miocene. High values of the ratio and the crystallinity represent the enhanced chemical weathering, whereas low values indicate the weakened chemical weathering or the strengthened physical erosion process. The smectite/illite ratio and illite crystallinity both decreased rapidly during 14.4–13.8 Ma, indicating the chemical weathering in the surrounding area of the South China Sea weakened rapidly, which we believe is the result of the MMCT event forcing. In addition, their values increased slightly during 16.2–14.4 Ma, which is in response to the relatively enhanced chemical weathering during the Middle Miocene Climate Optimum (MMCO). The variation pattern of clay mineral assemblages of the early-middle Miocene ORB in the South China Sea and its rapid transformation during the MMCT reveal that the Cenozoic cooling played a specific role in controlling the chemical weathering of the Earth’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali S, Hathorne E C, Frank M. 2021. Persistent provenance of South Asian monsoon-inducedsilicateweatheringover the past 27 millionyears. Paleoceanogr Paleoclimatol, 36: 3909

    Article  Google Scholar 

  • Biscaye P E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull, 76: 803–832

    Article  Google Scholar 

  • Bouchal J M, Güner T H, Denk T. 2018. Middle Miocene climate of southwestern Anatolia from multiple botanical proxies. Clim Past, 14: 1427–1440

    Article  Google Scholar 

  • Chamley H. 1989. Clay Sedimentology. Berlin: Springer. 1–623

    Book  Google Scholar 

  • Clift P D, Lee J I, Clark M K, Blusztajn J. 2002. Erosional response of South China to arc rifting and monsoonal strengthening: A record from the South China Sea. Mar Geol, 184: 207–226

    Article  Google Scholar 

  • Clift P D, Wan S, Blusztajn J. 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25Ma in the northern South China Sea: A review of competing proxies. Earth-Sci Rev, 130: 86–102

    Article  Google Scholar 

  • Flower B P, Kennett J P. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr Palaeoclimatol Palaeoecol, 108: 537–555

    Article  Google Scholar 

  • Gensac E. 2008. Mise à jour des facteurs de corrections de Biscaye utilisés lors la détermination semi-quantitative de la composition de la fraction argileuse par diffraction des rayons X. Dissertation for Master’s Degree. Lille: Université de Lille I. 25

    Google Scholar 

  • Hamon N, Sepulchre P, Lefebvre V, Ramstein G. 2013. The role of East-Tethys seaway closure in the middle Miocene climatic transition (ca. 14 Ma). Clim Past Discuss, 9: 2115–2152

    Google Scholar 

  • Holbourn A, Kuhnt W, Lyle M, Schneider L, Romero O, Andersen N. 2013. Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling. Geology, 42: 19–22

    Article  Google Scholar 

  • Holtzapffel T. 1985. Les minéraux argileux: Préparation, analyse diffractométrique et détermination. Soc Géol Nord Pub, 12: 1–136

    Google Scholar 

  • John C M, Mutti M, Adatte T. 2003. Mixed carbonate-siliciclastic record on the North African margin (Malta)—Coupling of weathering processes and mid Miocene climate. Geol Soc Am Bull, 115: 217–229

    Article  Google Scholar 

  • Kahle M, Kleber M, Jahn R. 2002. Review of XRD-based quantitative analyses of clay minerals in soils: The suitability of mineral intensity factors. Geoderma, 109: 191–205

    Article  Google Scholar 

  • Knies J, Gaina C. 2008. Middle Miocene ice sheet expansion in the Arctic: Views from the Barents Sea. Geochem Geophys Geosyst, 9: Q02015

    Article  Google Scholar 

  • Larsen H C, Jian Z M, Alvarez Zarikian C A, Sun Z, Stock J M, Klaus A, Boaga J, Bowden S A, Briais A, Chen Y F, Cukur D, Dadd K A, Ding W W, Dorais M J, Ferré E C, Ferreira F, Furusawa A, Gewecke A J, Hinojosa J L, Höfig T W, Hsiung K -H, Huang B Q, Huang E Q, Huang X L, Jiang S J, Jin H Y, Johnson B G, Kurzawski R M, Lei C, Li B H, Li L, Li Y P, Lin J, Liu C L, Liu Z F, Luna A, Lupi C, McCarthy A J, Mohn G, Ningthoujam L S, Nirrengarten M, Osono N, Peate D W, Persaud P, Qui N, Robinson C M, Satolli S, Sauermilch I, Schindlbeck J C, Skinner S M, Straub S M, Su X, Tian L Y, van der Zwan F M, Wan S M, Wu H C, Xiang R, Yadav R, Yi L, Zhang C M, Zhang J C, Zhang Y, Zhao N, Zhong G F, Zhong L F. 2018. Site U1502. South China Sea Rifted Margin. In: Proceedings of the International Ocean Discovery Program, 367/368. College Station, TX

  • Li X H, Wei G J, Shao L, Liu Y, Liang X R, Jian Z M, Sun M, Wang P X. 2003. Geochemical and Nd isotopic variations in sediments of the South China Sea: A response to Cenozoic tectonism in SE Asia. Earth Planet Sci Lett, 211: 207–220

    Article  Google Scholar 

  • Liu Z, Colin C, Huang W, Le K P, Tong S, Chen Z, Trentesaux A. 2007. Climatic and tectonic controls on weathering in south China and Indochina Peninsula: Clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochem Geophys Geosyst, 8: Q05005

    Google Scholar 

  • Liu Z F, Colin C, Li X J, Zhao Y L, Tuo S T, Chen Z, Siringan F P, Liu J T, Huang C Y, You C F, Huang K F. 2010. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Mar Geol, 277: 48–60

    Article  Google Scholar 

  • Liu Z, Colin C, Trentesaux A, Blamart D, Bassinot F, Siani G, Sicre M A. 2004. Erosional history of the eastern Tibetan Plateau since 190 kyr ago: Clay mineralogical and geochemical investigations from the southwestern South China Sea. Mar Geol, 209: 1–18

    Article  Google Scholar 

  • Liu Z F, Trentesaux A, Clemens S C, Colin C, Wang P X, Huang B Q, Boulay S. 2003. Clay mineral assemblages in the northern South China Sea: Implications for East Asian Monsoon evolution over the past 2 million years. Mar Geol, 201: 133–146

    Article  Google Scholar 

  • Liu Z F, Wang H, Hantoro W S, Sathiamurthy E, Colin C, Zhao Y L, Li J R. 2012. Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra). Chem Geol, 291: 1–12

    Article  Google Scholar 

  • Liu Z F, Zhao Y L, Colin C, Siringan F P, Wu Q. 2009. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments. Appl Geochem, 24: 2195–2205

    Article  Google Scholar 

  • Liu Z F, Zhao Y L, Colin C, Stattegger K, Wiesner M G, Huh C A, Zhang Y W, Li X J, Sompongchaiyakul P, You C F, Huang C Y, Liu J T, Siringan F P, Le K P, Sathiamurthy E, Hantoro W S, Liu J G, Tuo S T, Zhao S H, Zhou S W, He Z D, Wang Y C, Bunsomboonsakul S, Li Y L. 2016. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth-Sci Rev, 153: 238–273

    Article  Google Scholar 

  • Lyu X, Liu Z F. 2017. Distribution, compositions and significance of oceanic red beds (in Chinese with English abstract). Adv Earth Sci, 32: 1307–1318

    Google Scholar 

  • Petschick R, Kuhn G, Gingele F. 1996. Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Mar Geol, 130: 203–229

    Article  Google Scholar 

  • Petschick R. MacDiff 4.2.2. http://servermac.geologie.un-frankfurt.de/Rainer.html, 2000

  • Ren X P, Nie J S, Saylor J E, Wang X X, Liu F B, Horton B K. 2020. Temperature control on silicate weathering intensity and evolution of the Neogene East Asian summer monsoon. Geophys Res Lett, 47: e88808

    Google Scholar 

  • Sandroni S, Talarico F M. 2011. The record of Miocene climatic events in AND-2A drill core (Antarctica): Insights from provenance analyses of basement clasts. Glob Planet Change, 75: 31–46

    Article  Google Scholar 

  • Scheiner F, Holcová K, Milovský R, Kuhnert H. 2018. Temperature and isotopic composition of seawater in the epicontinental sea (Central Paratethys) during the Middle Miocene Climate Transition based on Mg/Ca, δ18O and δ13C from foraminiferal tests. Palaeogeogr Palaeoclimatol Palaeoecol, 495: 60–71

    Article  Google Scholar 

  • Schroeder A, Wiesner M G, Liu Z. 2015. Fluxes of clay minerals in the South China Sea. Earth Planet Sci Lett, 430: 30–42

    Article  Google Scholar 

  • Shevenell A E, Kennett J P, Lea D W. 2004. Middle Miocene Southern Ocean cooling and Antarctic cryosphere expansion. Science, 305: 1766–1770

    Article  Google Scholar 

  • Song Y G, Wang Q S, An Z S, Qiang X K, Dong J B, Chang H, Zhang M S, Guo X H. 2018. Mid-Miocene climatic optimum: Clay mineral evidence from the red clay succession, Longzhong Basin, Northern China. Palaeogeogr Palaeoclimatol Palaeoecol, 512: 46–55

    Article  Google Scholar 

  • Spector P, Balco G. 2020. Exposure-age data from across Antarctica reveal mid-Miocene establishment of polar desert climate. Geology, 49: 91–95

    Article  Google Scholar 

  • Sun Z, Jian Z M, Stock J M, Larsen H C, Klaus A, Alvarez Zarikian C A, and Expedition 367/368 Scientists. 2018. South China Sea Rifted Margin. In: Proceedings of the International Ocean Discovery Program, 367/368. College Station, TX

  • Tian J, Shevenell A, Wang P X, Zhao Q H, Li Q Y, Cheng X R. 2009. Reorganization of Pacific deep waters linked to middle Miocene Antarctic cryosphere expansion: A perspective from the South China Sea. Palaeogeogr Palaeoclimatol Palaeoecol, 284: 375–382

    Article  Google Scholar 

  • Tian J, Yang M, Lyle M W, Wilkens R, Shackford J K. 2013. Obliquity and long eccentricity pacing of the Middle Miocene climate transition. Geochem Geophys Geosyst, 14: 1740–1755

    Article  Google Scholar 

  • Wan S M, Kürschner W M, Clift P D, Li A C, Li T G. 2009. Extreme weathering/erosion during the Miocene Climatic Optimum: Evidence from sediment record in the South China Sea. Geophys Res Lett, 36: L19706

    Article  Google Scholar 

  • Wan S M, Li A C, Clift P D, Stuut J W. 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeogr Palaeoclimatol Palaeoecol, 254: 561–582

    Article  Google Scholar 

  • Westerhold T, Marwan N, Anna D, Liebrand D, Agnini D, Anagnostou E, Barnet J S K, BohatyS M, Vleeschouwer D D, Florindo F, Frederichs T, Hodell D A, Holbourn A E, Kroon D, Lauretano V, Littler K, Lourens L J, Lyle M, Pälike H, Röhl U, Tian J, Wilkens R H, Wilson P A, Zachos J. 2020. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science, 369: 1383–1387

    Article  Google Scholar 

  • White A F, Blum A E. 1995. Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta, 59: 1729–1747

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693

    Article  Google Scholar 

Download references

Acknowledgements

This research used samples and data provided by the International Ocean Discovery Project (IODP). We thank Yijie WANG, Yuwei WANG, Wei SHU, and Yanli LI for their helpful discussion or technique help. This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFE0202402), the Shanghai Science and Technology Innovation Action Plan (Grant No. 20590780200), and the National Natural Science Foundation of China (Grant Nos. 41530964 & 41942046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Liu, Z., Lyu, X. et al. Clay mineral assemblages of the oceanic red beds in the northern South China Sea and their responses to the Middle Miocene Climate Transition. Sci. China Earth Sci. 65, 899–909 (2022). https://doi.org/10.1007/s11430-021-9878-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-021-9878-0

Keywords

Navigation