Skip to main content
Log in

Clay mineral assemblages at IODP Site U1340 in the Bering Sea and their paleoclimatic significance

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Clay mineral assemblages and crystallinities in sediments from IODP Site 1340 in the Bering Sea were analyzed in order to trace sediment sources and reconstruct the paleoclimatic history of the Bering Sea since Pliocene (the last ∼4.3 Myr). The results show that clay minerals at Site U1340 are dominated by illite, with a moderate amount of smectite and chlorite, and minor kaolinite. Sediment source studies suggest that the clay mineral assemblages and their sources in the studied core are controlled primarily by the climate conditions. During the warm periods, clay minerals originated mainly from the adjacent Aleutian Islands, and smectite/(illite+chlorite) ratios increased. During the cold periods, clay minerals were derived primarily from the Alaskan region, and smectite/(illite+chlorite) ratios decreased. Based on smectite/(illite+chlorite) ratios and clay mineral crystallinities, the evolutionary history of the paleoclimate was revealed in the Bering Sea. In general, the Bering Sea was characterized by warm and wet climate condition from 4.3 to 3.94 Myr, and then cold and dry condition associated with the enhanced volcanism from 3.94 to 3.6 Myr. Thereafter, the climate gradually became cold and wet, and then was dominated by a cold and dry condition since 2.74 Myr, probably induced by the intensification of the Northern Hemisphere Glaciation. The interval from 1.95 to 1.07 Myr was a transitional period of the climate gradually becoming cold and wet. After the middle Pleistocene transition (1.07 to 0.8 Myr), the Bering Sea was governed mainly by cold and wet climate with several intervals of warm climate at ∼0.42 Ma (MIS 11), ∼0.33 Ma (MIS 9) and ∼0.12 Ma (MIS 5), respectively. During the last 9.21 kyr (the Holocene), the Bering Sea was characterized primarily by relatively warm and wet climatic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiello I W, Ravelo A C. 2012. Evolution of marine sedimentation in the Bering Sea since the Pliocene. Geosphere, 8: 1231–1253

    Article  Google Scholar 

  • Bintanja R, van de Wal R S, Oerlemans J. 2005. Modelled atmospheric temperatures and global sea levels over the past million years. Nature, 437: 125–128

    Article  Google Scholar 

  • Biscaye P E. 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol Soc Am Bull, 76: 803–832

    Article  Google Scholar 

  • Chamley H, Diester-Haass L. 1979. Upper Miocene to Pleistocene climates in northwest Africa deduced from terrigenous components of Site 397 sediments (DSDP Leg 47A). In: Ryan W B F, Sibuet J C, et al., eds. Init Repts DSDP. Washington D C: U.S. Government Printing Office. 641–646

    Google Scholar 

  • Chamley H. 1989. Clay Sedimentology. New York: Springer-Verlag, 1–561

    Book  Google Scholar 

  • Chekhovich V D, Kovalenko D V, Ledneva G V. 1999. Cenozoic history of the Bering Sea and its northwestern margin. Isl Arc, 8: 168–180

    Article  Google Scholar 

  • Chen M H, Zhang Q, Zhang L L, et al. 2014. Stratigraphic distribution of the radiolaria Spongodiscus biconcavus Haeckel at IODP Site U1340 in the Bering Sea and its paleoceanographic significance. Paleoworld, 23: 90–104

    Article  Google Scholar 

  • Clark P U, Archer D, Pollard D, et al. 2006. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric PCO2. Quat Sci Rev, 25:3150–3184

    Article  Google Scholar 

  • Coachman L K, Whitledge T E, Goering J J. 1999. Silica in Bering Sea deep and bottom water. In: Loughlin T R, Ohtani K, eds. The Physical Oceanography of the Bering Sea. Fairbanks: University of Alaska Sea Grant. 285–309

    Google Scholar 

  • Diekmann B, Petschick R, Gingele F X, et al. 1996. Clay mineral fluctuations in late Quaternary of the southeastern South Atlantic: Implications for past changes of deepwater advection. In: Wefer G, Berger W H, Siedler G, et al., eds. The South Atlantic: Present and Past Circulation. Berlin: Springer. 621–644

    Chapter  Google Scholar 

  • Ehrmann W. 1998. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Paleogeogr Paleoclimatol Paleoecol, 139: 213–231

    Article  Google Scholar 

  • Ehrmann W, Setti M, Marinoni L. 2005. Clay minerals in Cenozoic sediments off Cape Roberts (McMurdo Sound, Antarctica) reveal palaeoclimatic history. Paleogeogr Paleoclimatol Paleoecol, 229: 187–211

    Article  Google Scholar 

  • EPCIA community. 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429: 623–628

    Article  Google Scholar 

  • Franke D, Ehrmann W. 2010. Neogene clay mineral assemblages in the AND-2A drill core (McMurdo Sound, Antarctica) and their implications for environmental change. Paleogeogr Paleoclimatol Paleoecol, 286: 55–65

    Article  Google Scholar 

  • Gardner J V, Dean W E, Vallier T L. 1980. Sedimentology and geochemistry of surface sediments, outer continental shelf, southern Bering Sea. Mar Geol, 35: 299–329

    Article  Google Scholar 

  • Gingele F X. 1996. Holocene climatic optimum in Southwest Africa—Evidence from the marine clay mineral record. Paleogeogr Paleoclimatol Paleoecol, 122: 77–87

    Article  Google Scholar 

  • Gingele F X, Müller P M, Schneider R R. 1998. Orbital forcing of freshwater input in the Zaire Fan area—Clay mineral evidence from the last 200 kyr. Paleogeogr Paleoclimatol Paleoecol, 138: 17–26

    Article  Google Scholar 

  • Hood D W. 1983. The Bering Sea. In: Ketchum B H, ed. Estuaries and Enclosed Seas. London: Elsevier Science Publishing Co. 337–373

    Google Scholar 

  • Hopkins D M. 1973. Sea level history in Beringia during the past 250000 years. Quat Res, 3: 520–540

    Article  Google Scholar 

  • Imbrie J, Shackleton N J, Pisias N G, et al. 1984. The orbital theory of Pleistocene climate: Support from a revised chronology of the marine δ 18O record. In: Berger A, ed. Milankovitch and Climate, Part 1. Dordrecht: Reidel Publishing Company. 269–305

    Google Scholar 

  • Jacobs M B, Hays J D. 1972. Paleo-climatic events indicated by mineralogical changes in deep-sea sediments. J Sediment Res, 42: 889–898

    Google Scholar 

  • Jansen J, Kuijpers A, Troelstra S. 1986. A mid-Brunhes climatic event: Long-term changes in global atmosphere and ocean circulation. Science, 232: 619–622

    Article  Google Scholar 

  • Jeong G Y, Yoon H I, Lee S Y. 2004. Chemistry and microstructures of clay particles in smectite-rich shelf sediments, South Shetland Islands, Antarctica. Mar Geol, 209: 19–30

    Article  Google Scholar 

  • Kent D, Opdyke N D, Ewing M. 1971. Climate change in the North Pacific using ice-rafted detritus as a climatic indicator. Geo Soc Am Bull, 82: 2741–2754

    Article  Google Scholar 

  • Knebel H J, Creager J S. 1973. Yukon River: Evidence for extensive migration during the Holocene transgression. Science, 179: 1230–1232

    Article  Google Scholar 

  • Ling H Y. 1992. Late Neogene silicoflagellates and ebridians from Leg 128, Sea of Japan. In: Pisciotto K A, Ingle J C, Jr von Breymann M T, et al., eds. Proceedings of the Ocean Drilling Program. Scientific Results 127/128. College Station: Ocean Drilling Program. 237–248

    Google Scholar 

  • Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography, 20: PA1003. doi: 10.1029/2004PA001071

    Google Scholar 

  • Liu J G, Li T G, Xiang R et al. 2013. Influence of the Kuroshio Current intrusion on Holocene environmental transformation in the South China Sea. Holocene. 23: 850–859

    Article  Google Scholar 

  • Liu Z F, Trentesaux A, Clemens S C, et al. 2003. Clay mineral assemblages in the northern South China Sea: Implications for East Asian monsoon evolution over the past 2 million years. Mar Geol, 201: 133–146

    Article  Google Scholar 

  • Liu Z F, Colin C, Trentesaux A, et al. 2005. Clay mineral records of East Asian monsoon evolution during late Quaternary in the southern South China Sea. Sci China Ser D-Earth Sci, 48: 84–92

    Article  Google Scholar 

  • Liu Z F, Zhao Y L, Li J R, et al. 2007. Late Quaternary clay minerals off Middle Vietnam in the western South China Sea: Implications for source analysis and East Asian monsoon evolution. Sci China Ser D-Earth Sci, 50: 1674–1684

    Article  Google Scholar 

  • Liu Z F, Wang H, Hantoro W S, 2012. Climatic and tectonic controls on chemical weathering in tropical Southeast Asia (Malay Peninsula, Borneo, and Sumatra). Chem Geol, 291: 1–12

    Article  Google Scholar 

  • März C, Schnetger B, Brumsack H J. 2013. Nutrient leakage from the North Pacific to the Bering Sea (IODP Site U1341) following the onset of Northern Hemispheric Glaciation?. Paleoceanography, 28: 68–78

    Article  Google Scholar 

  • Maslin M A, Haug G H, Sarnthein M, et al. 1996. The progressive intensification of Northern Hemisphere glaciation as seen from the North Pacific. Geol Rundsch, 85: 452–465

    Article  Google Scholar 

  • McManus D A, Venkatarathnam K, Hopkins D M, et al. 1974. Yukon River sediment on the northernmost Bering Sea shelf. J Sediment Res, 44: 1052–1060

    Google Scholar 

  • Moore D M, Reynolds R C J. 1997. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford: Oxford University Press. 332

    Google Scholar 

  • Mowatt T C, Naidu A S. 1987. A brief overview of the clay mineral assemblages in sediments of the major rivers of Alaska and adjacent Arctic Canada. In: Degens E T, Kempe S, Weibin G, eds. Transport of Carbon and Minerals in Major World Rivers. Hamburg: University of Hamburg. 269–277

    Google Scholar 

  • Mudelsee M, Schulz M. 1997. The Mid-Pleistocene climate transition: Onset of 100 ka cycle lags ice volume build-up by 280 ka. Earth Planet Sci Lett, 151: 117–123

    Article  Google Scholar 

  • Naidu A S, Creager J S, Mowatt T C. 1982. Clay mineral dispersal patterns in the North Bering and Chukchi Seas. Mar Geol, 47: 1–15

    Article  Google Scholar 

  • Naidu A S, Mowatt T C. 1983. Sources and dispersal patterns of clay minerals in surface sediments from the continental-shelf areas off Alaska. Geol Soc Am Bull, 94: 841–854

    Article  Google Scholar 

  • Naidu A S, Han M W, Mowatt T C, et al. 1995. Clay minerals as indicators of sources of terrigenous sediments, their transportation and deposition: Bering Basin, Russian-Alaskan Arctic. Mar Geol, 127: 87–104

    Article  Google Scholar 

  • Onodera J, Takahashi K, Nagatomo R. 2013. Diatoms, silicoflagellates, and ebridians at Site U1341 on the western slope of Bowers Ridge, IODP Expedition 323. Deep-Sea Res Part II-Top Stud Oceanogr, doi: 10.1016/j.dsr2.2013.03.025

    Google Scholar 

  • Pearson C A, Mojfeld H O, Tripp R B. 1981. Tides of the eastern Bering Sea shelf. In: Hood D W, Calder J A, eds. The Eastern Bering Sea Shelf: Oceanography and Resources. Washington D C: U S Gov Print Off. 111–130

    Google Scholar 

  • Petschick R, Kuhn G, Gingele F. 1996. Clay mineral distribution in surface sediments of the South Atlantic: Sources, transport, and relation to oceanography. Mar Geol, 130: 203–229

    Article  Google Scholar 

  • Ping C L, Shoji S, Ito T. 1988. Properties and classification of three volcanic ash-derived pedons from Aleutian Islands and Alaska Peninsula, Alaska. Soil Sci Soc Am J, 52: 455–462

    Article  Google Scholar 

  • Pisias N G, Moore Jr T C. 1981. The evolution of Pleistocene climate: A time series approach. Earth Planet Sci Lett, 52: 450–458

    Article  Google Scholar 

  • Raymo M E. 1994. The initiation of Northern Hemisphere glaciation. Annu Rev Earth Planet Sci, 22: 353–383

    Article  Google Scholar 

  • Roden G I. 1967. On river discharge into the northeastern Pacific Ocean and the Bering Sea. J Geophys Res, 72: 5613–5629

    Article  Google Scholar 

  • Rohling E J, Fenton M, Jorissen F J, et al. 1998. Magnitudes of sea-level lowstands of the past 500000 yr. Nature, 394: 162–165

    Article  Google Scholar 

  • Sancetta C, Robinson S. 1983. Diatom evidence on Wisconsin and Holocene events in the Bering Sea. Quat Res, 20: 232–245

    Article  Google Scholar 

  • Sancetta C L, Hausser L, Labeyrie L, et al. 1985. Wisconsin-Holocene paleoenvironment of the Bering Sea: Evidence from diatoms, pollen, oxygen isotopes and clay mineralogy. Mar Geol, 62: 55–68

    Article  Google Scholar 

  • Scholl D W, Buffington E C, Hopkins D M. 1968. Geologic history of the continental margin of North America in Bering Sea. Mar Geol, 6: 297–330

    Article  Google Scholar 

  • Scholl D W, Buffington E C, Hopkins D M, et al. 1970. The structure and origin of the large submarine canyons of the Bering Sea. Mar Geol, 8: 187–210

    Article  Google Scholar 

  • Scholl D W, Buffington E C, Marlow M S. 1975. Plate tectonics and the structural evolution of the Aleutian-Bering Sea region. In: Forbes R B, ed. Contributions to the Geology of the Bering Sea Basin and Adjacent Regions. Geol Soc Am Spec Paper, 151: 1–32

    Article  Google Scholar 

  • Singer A. 1984. The paleoclimatic interpretation of clay minerals in sediments—A review. Earth-Sci Rev, 21: 251–293

    Article  Google Scholar 

  • Stabeno P J, Reed R K, Overland J E, 1994. Lagrangian measurements in the Kamchatka Current and Oyashio. J Oceanogr, 50: 653–662

    Article  Google Scholar 

  • Takahashi K. 1998. The Bering Sea and Okhotsk Sea: Modern and past paleoceanographhic changes and gateway impact. J Asian Earth Sci, 16: 49–58

    Article  Google Scholar 

  • Takahashi K. 1999. Paleoceanographic changes and present environment of the Bering Sea. In: Loughlin T R, Ohtani K. eds. Dynamics of the Bering Sea. Fairbanks: University of Alaska Sea Grant. 365–385

    Google Scholar 

  • Takahashi K. 2005. The Bering Sea and paleoceanography. Deep-Sea Res Part II-Top Stud Oceanogr, 52: 2080–2091

    Article  Google Scholar 

  • Takahashi K, Ravelo A C, Alvarez Zarikian C A, et al. 2011. Proceedings of the Integrated Ocean Drilling Program, 323. Tokyo: Integrated Ocean Drilling Program Management International, Inc. doi: 10.2204/iodp.proc.323.104.2011

    Google Scholar 

  • Teraishi A, Suto I, Onodera J, et al. 2013. Diatom, silicoflagellate and ebridian biostratigraphyand paleoceanography in IODP 323 Hole U1343E at the Bering slope site. Deep-Sea Res Part II-Top Stud Oceanogr, doi: 10.1016/j.dsr2.2013.03.026

    Google Scholar 

  • Underwood M B, Hathon E G. 1989. Provenance and dispersal of muds south of the Aleutian arc, north Pacific Ocean. Geo-Mar Lett, 9: 67–75

    Article  Google Scholar 

  • VanLaningham S, Pisias N G, Duncan R A, et al. 2009. Glacial-interglacial sediment transport to the Meiji Drift, northwest Pacific Ocean: Evidence for timing of Beringian outwashing. Earth Planet Sci Lett, 277: 64–72

    Article  Google Scholar 

  • Wan S M, Li A C, Clift P D, et al. 2006. Development of the East Asian summer monsoon: Evidence from the sediment record in the South China Sea since 8.5 Ma. Paleogeogr Paleoclimatol Paleoecol, 241: 139–159

    Article  Google Scholar 

  • Wan S M, Li A C, Clift P D, et al. 2007. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Paleogeogr Paleoclimatol Paleoecol, 254: 561–582

    Article  Google Scholar 

  • Wan S M, Li A C, Xu K F, et al. 2008. Characteristics of Clay Minerals in the Northern South China Sea and Its Implications for Evolution of East Asian Monsoon since Miocene (in Chinese). Earth Sci J China Univ Geosci, 33: 289–300

    Google Scholar 

  • Wan S M, Tian J, Steinke S. et al., 2010. Evolution and variability of the East Asian summer monsoon during the Pliocene: Evidence from clay mineral records of the South China Sea. Paleogeogr Paleoclimatol Paleoecol, 293: 237–247

    Article  Google Scholar 

  • Wang P X, Tian J, Cheng X R, et al. 2003. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 31: 239–242

    Article  Google Scholar 

  • Zhang Q, Chen M H, Zhang L L, et al., 2014a. Variations in the radiolarian assemblages in the Bering Sea since Pliocene and their implications for paleoceanography. Paleogeogr Paleoclimatol Paleoecol, 410: 337–350

    Article  Google Scholar 

  • Zhang Q, Chen M H, Zhang L L, et al. 2014b. Radiolarian Biostratigraphy in the Southern Bering Sea since Pliocene. Sci China Earth Sci, 57: 682–692

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Chen, M., Liu, J. et al. Clay mineral assemblages at IODP Site U1340 in the Bering Sea and their paleoclimatic significance. Sci. China Earth Sci. 58, 707–717 (2015). https://doi.org/10.1007/s11430-014-5049-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-5049-3

Keywords

Navigation