Skip to main content
Log in

Progress in plant phenology modeling under global climate change

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Plant phenology is the study of the timing of recurrent biological events and the causes of their timing with regard to biotic and abiotic forces. Plant phenology affects the structure and function of terrestrial ecosystems and determines vegetation feedback to the climate system by altering the carbon, water and energy fluxes between the vegetation and near-surface atmosphere. Therefore, an accurate simulation of plant phenology is essential to improve our understanding of the response of ecosystems to climate change and the carbon, water and energy balance of terrestrial ecosystems. Phenological studies have developed rapidly under global change conditions, while the research of phenology modeling is largely lagged. Inaccurate phenology modeling has become the primary limiting factor for the accurate simulation of terrestrial carbon and water cycles. Understanding the mechanism of phenological response to climate change and building process-based plant phenology models are thus important frontier issues. In this review, we first summarized the drivers of plant phenology and overviewed the development of plant phenology models. Finally, we addressed the challenges in the development of plant phenology models and highlighted that coupling machine learning and Bayesian calibration into process-based models could be a potential approach to improve the accuracy of phenology simulation and prediction under future global change conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida J, Dos Santos J A, Alberton B, Torres R D S, Morellato L P C. 2014. Applying machine learning based on multiscale classifiers to detect remote phenology patterns in Cerrado savanna trees. Inform, 23: 49–61

    Google Scholar 

  • Barba D, Rossi S, Deslauriers A, Morin H. 2015. Effects of soil warming and nitrogen foliar applications on bud burst of black spruce. Trees, 30: 87–97

    Google Scholar 

  • Basler D, Körner C. 2014. Photoperiod and temperature responses of bud swelling and bud burst in four temperate forest tree species. Tree Physiol, 34: 377–388

    Google Scholar 

  • Bigras F J, Gonzalez A, D’Aoust A L, Hébert C. 1996. Frost hardiness, bud phenology and growth of containerized Picea mariana seedlings grown at three nitrogen levels and three temperature regimes. New For, 12: 243–259

    Google Scholar 

  • Boeck H J, Bassin S, Verlinden M, Zeiter M, Hiltbrunner E. 2016. Simulated heat waves affected alpine grassland only in combination with drought. New Phytol, 209: 531–541

    Google Scholar 

  • Borchert R, Robertson K, Schwartz M D, Williams-Linera G. 2005. Phenology of temperate trees in tropical climates. Int J Biometeorol, 50: 57–65

    Google Scholar 

  • Caffarra A, Donnelly A, Chuine I, Jones M. 2011a. Modelling the timing of Betula pubescens budburst. I. Temperature and photoperiod: A conceptual model. Clim Res, 46: 147–157

    Google Scholar 

  • Caffarra A, Donnelly A, Chuine I. 2011b. Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Clim Res, 46: 159–170

    Google Scholar 

  • Carter J M, Orive M E, Gerhart L M, Stern J H, Marchin R M, Nagel J, Ward J K. 2017. Warmest extreme year in U.S. history alters thermal requirements for tree phenology. Oecologia, 183: 1–14

    Google Scholar 

  • Chen X, An S, Inouye D W, Schwartz M D. 2015. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob Change Biol, 21: 3635–3646

    Google Scholar 

  • Chen X, Wang L, Inouye D. 2017. Delayed response of spring phenology to global warming in subtropics and tropics. Agric For Meteorol, 234–235: 222–235

    Google Scholar 

  • Chuine I. 2000. A unified model for budburst of trees. J Theor Biol, 207: 337–347

    Google Scholar 

  • Chuine I. 2010. The role of phenology in ecology and evolution: Why does phenology drive species distribution? Phil Trans R Soc B, 365: 3149–3160

    Google Scholar 

  • Chuine I, Morin X, Bugmann H. 2010. Warming, photoperiods, and tree phenology. Science, 329: 277–278

    Google Scholar 

  • Chuine I, Bonhomme M, Legave J M, García de Cortázar-Atauri I, Charrier G, Lacointe A, Améglio T. 2016. Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break. Glob Change Biol, 22: 3444–3460

    Google Scholar 

  • Christensen J H, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli R K, Kwon W T, Laprise R, Magana Rueda V, Mearns L, Menéndez C G, Räisänen J, Rinke A, Sarr A, Whetton P. Regional. Cimate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press

  • Clark J S, Salk C, Melillo J, Mohan J. 2014. Tree phenology responses to winter chilling, spring warming, at north and south range limits. Funct Ecol, 28: 1344–1355

    Google Scholar 

  • Cleland E E, Chiariello N R, Loarie S R, Mooney H A, Field C B. 2006. Diverse responses of phenology to global changes in a grassland ecosystem. Proc Natl Acad Sci USA, 103: 13740–13744

    Google Scholar 

  • Crabbe R A, Dash J, Rodriguez-Galiano V F, Janous D, Pavelka M, Marek M V. 2016. Extreme warm temperatures alter forest phenology and productivity in Europe. Sci Total Environ, 563–564: 486–495

    Google Scholar 

  • Czernecki B, Nowosad J, Jabłońska K. 2018. Machine learning modeling of plant phenology based on coupling satellite and gridded meteorological dataset. Int J Biometeorol, 62: 1297–1309

    Google Scholar 

  • Dai W, Jin H, Zhang Y, Liu T, Zhou Z. 2019. Detecting temporal changes in the temperature sensitivity of spring phenology with global warming: Application of machine learning in phenological model. Agric For Meteorol, 279: 1–14

    Google Scholar 

  • Dose V, Menzel A. 2004. Bayesian analysis of climate change impacts in phenology. Glob Change Biol, 10: 259–272

    Google Scholar 

  • Dunne J A, Harte J, Taylor K J. 2003. Subalpine meadow flowering phenology responses to climate change: Integrating experimental and gradient methods. Ecol Monographs, 73: 69–86

    Google Scholar 

  • Delpierre N, Dufrêne E, Soudani K, Ulrich E, Cecchini S, Boé J, François C. 2009. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric For Meteorol, 149: 938–948

    Google Scholar 

  • Dong J, Zhang G, Zhang Y, Xiao X. 2013. Reply to Wang: Snow cover and air temperature affect the rate of changes in spring phenology in the Tibetan Plateau. Proc Natl Acad Sci USA, 110: E2856

    Google Scholar 

  • Estrella N, Menzel A. 2006. Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Clim Res, 32: 253–267

    Google Scholar 

  • Flynn D F B, Wolkovich E M. 2018. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol, 219: 1353–1362

    Google Scholar 

  • Friedl M A, Gray J M, Melaas E K, Richardson A D, Hufkens K, Keenan T F, Bailey A, O’Keefe J. 2014. A tale of two springs: Using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environ Res Lett, 9: 054006

    Google Scholar 

  • Fu Y H, Campioli M, Demarée G, Deckmyn A, Hamdi R, Janssens I A, Deckmyn G. 2012. Bayesian calibration of the Unified budburst model in six temperate tree species. Int J Biometeorol, 56: 153–164

    Google Scholar 

  • Fu Y S H, Campioli M, Vitasse Y, De Boeck H J, Van den Berge J, AbdElgawad H, Asard H, Piao S, Deckmyn G, Janssens I A. 2014a. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc Natl Acad Sci USA, 111: 7355–7360

    Google Scholar 

  • Fu Y H, Piao S, Zhao H, Jeong S J, Wang X, Vitasse Y, Ciais P, Janssens I A. 2014b. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Glob Change Biol, 20: 3743–3755

    Google Scholar 

  • Fu Y H, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñuelas J, Song Y, Vitasse Y, Zeng Z, Janssens I A. 2015a. Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526: 104–107

    Google Scholar 

  • Fu Y H, Piao S, Vitasse Y, Zhao H, De Boeck H J, Liu Q, Yang H, Weber U, Hänninen H, Janssens I A. 2015b. Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: Effects of chilling, precipitation and insolation. Glob Change Biol, 21: 2687–2697

    Google Scholar 

  • Fu Y H, Liu Y, De Boeck H J, Menzel A, Nijs I, Peaucelle M, Peñuelas J, Piao S, Janssens I A. 2016. Three times greater weight of daytime than of night-time temperature on leaf unfolding phenology in temperate trees. New Phytol, 212: 590–597

    Google Scholar 

  • Fu Y H, Piao S, Zhou X, Geng X, Hao F, Vitasse Y, Janssens I A. 2019a. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Glob Change Biol, 25: 1696–1703

    Google Scholar 

  • Fu Y H, Piao S, Delpierre N, Hao F, Hänninen H, Geng X, Peñuelas J, Zhang X, Janssens I A, Campioli M. 2019b. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. Tree Physiol, 39: 1277–1284

    Google Scholar 

  • Fu Y H, Zhang X, Piao S, Hao F, Geng X, Vitasse Y, Zohner C, Peñuelas J, Janssens I A. 2019c. Daylength helps temperate deciduous trees to leaf-out at the optimal time. Glob Change Biol, 25: 2410–2418

    Google Scholar 

  • Gallagher M, Doherty J. 2007. Parameter estimation and uncertainty analysis for a watershed model. Environ Model Software, 22: 1000–1020

    Google Scholar 

  • Hänninen H. 1990. Modelling bud dormancy release in trees from cool and temperate regions. Acta For Fenn, 213: 1–47

    Google Scholar 

  • Hänninen H. 1995. Effects of climatic change on trees from cool and temperate regions: An ecophysiological approach to modelling of bud burst phenology. Tree Physiol, 73: 183–199

    Google Scholar 

  • Hänninen H. 2016. The annual phenological cycle. In: Hänninen H, ed. Boreal and Temperate Trees in a Changing Climate: Modelling the Ecophysiology of Seasonality. Dordrecht: Springer Press. 35–138

    Google Scholar 

  • Hänninen H, Tanino K. 2011. Tree seasonality in a warming climate. Trends Plant Sci, 16: 412–416

    Google Scholar 

  • Hänninen H, Kramer K, Tanino K, Zhang R, Wu J, Fu Y H. 2019. Experiments are necessary in process-based tree phenology modelling. Trends Plant Sci, 24: 199–209

    Google Scholar 

  • Hawkins D M. 2004. The problem of overfitting. J Chem Inform Computer Sci, 44: 1–12

    Google Scholar 

  • Heide O M. 1993. Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees. Physiol Plantarum, 88: 531–540

    Google Scholar 

  • Hunter A F, Lechowicz M J. 1992. Predicting the timing of budburst in temperate trees. J Appl Ecol, 29: 597–604

    Google Scholar 

  • Jach M, Ceulemans R, Murray M. 2001. Impacts of greenhouse gases on the phenology of forest trees. In: Karnosky D F, Ceulemans R, Scarascia-Mugnozza G E, Innes J L, eds. The Impact of Carbon Dioxide and Other Greenhouse Gases on Forest Ecosystems. Wallingford: CABI Press. 193–235

    Google Scholar 

  • Jeong S J, Ho C H, Gim H J, Brown M E. 2011. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob Change Biol, 17: 2385–2399

    Google Scholar 

  • Karnosky D F, Zak D R, Pregitzer K S, Awmack C S, Bockheim J G, Dickson R E, Hendrey G R, Host G E, King J S, Kopper B J, Kruger E L, Kubiske M E, Lindroth R L, Mattson W J, Mcdonald E P, Noormets A, Oksanen E, Parsons W F J, Percy K E, Podila G K, Riemenschneider D E, Sharma P, Thakur R, Sober A, Sober J, Jones W S, Anttonen S, Vapaavuori E, Mankovska B, Heilman W, Isebrands J G. 2003. Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: A synthesis of molecular to ecosystem results from the Aspen FACE project. Funct Ecol, 17: 289–304

    Google Scholar 

  • Keenan T F, Richardson A D. 2015. The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models. Glob Change Biol, 21: 2634–2641

    Google Scholar 

  • Kobayashi K, Fuchigami L, English M. 1999. Modeling temperature requirements for rest development in Cornus sericea. Am Soc Hort Sci, 107: 914–918

    Google Scholar 

  • Körner C. 2007. Significance of Temperature in Plant Life. In: Morison J, Morecroft M, eds. Plant Growth and Climate Change. Oxford: Blackwell Publishing Ltd. 48–69

    Google Scholar 

  • Körner C, Basler D. 2010. Phenology under global warming. Science, 327: 1461–1462

    Google Scholar 

  • Kramer K. 1994. Selecting a model to predict the onset of growth of fagus sylvatica. J Appl Ecol, 31: 172–181

    Google Scholar 

  • Landsberg J J. 1974. Apple fruit bud development and growth: Analysis and an empirical model. Ann Bot, 38: 1013–1023

    Google Scholar 

  • Lang W, Chen X, Qian S, Liu G, Piao S. 2019. A new process-based model for predicting autumn phenology: How is leaf senescence controlled by photoperiod and temperature coupling? Agric For Meteorol, 268: 124–135

    Google Scholar 

  • Laube J, Sparks T H, Estrella N, Höfler J, Ankerst D P, Menzel A. 2013. Chilling outweighs photoperiod in preventing precocious spring development. Glob Change Biol, 20: 170–182

    Google Scholar 

  • Laube J, Sparks T H, Estrella N, Menzel A. 2014. Does humidity trigger tree phenology? Proposal for an air humidity based framework for bud development in spring. New Phytol, 202: 350–355

    Google Scholar 

  • Lesica P, Kittelson P M. 2010. Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland. J Arid Environ, 74: 1013–1017

    Google Scholar 

  • Linkosalo T, Hakkinen R, Hanninen H. 2006. Models of the spring phenology of boreal and temperate trees: Is there something missing? Tree Physiol, 26: 1165–1172

    Google Scholar 

  • Liu Q, Fu Y H, Zeng Z, Huang M, Li X, Piao S. 2016. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob Change Biol, 22: 644–655

    Google Scholar 

  • Migliavacca M, Sonnentag O, Keenan T F, Cescatti A, O’Keefe J, Richardson A D. 2012. On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeosciences, 9: 2063–2083

    Google Scholar 

  • Myneni R B, Keeling C D, Tucker C J, Asrar G, Nemani R R. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386: 698–702

    Google Scholar 

  • Morin X, Roy J, Sonié L, Chuine I. 2010. Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol, 186: 900–910

    Google Scholar 

  • Van Oijen M, Rougier J, Smith R. 2005. Bayesian calibration of process-based forest models: Bridging the gap between models and data. Tree Physiol, 25: 915–927

    Google Scholar 

  • Peñuelas J, Filella I. 2001. Phenology: Responses to a warming world. Science, 294: 793–795

    Google Scholar 

  • Peñuelas J, Filella I, Zhang X, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J. 2004. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol, 161: 837–846

    Google Scholar 

  • Peñuelas J, Rutishauser T, Filella I. 2009. Phenology feedbacks on climate change. Science, 324: 887–888

    Google Scholar 

  • Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A, Grelle A, Hollinger D Y, Laurila T, Lindroth A, Richardson A D, Vesala T. 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451: 49–52

    Google Scholar 

  • Piao S, Tan J, Chen A, Fu Y H, Ciais P, Liu Q, Janssens I A, Vicca S, Zeng Z, Jeong S J, Li Y, Myneni R B, Peng S, Shen M, Peñuelas J. 2015. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat Commun, 6: 6911

    Google Scholar 

  • Piao S, Liu Q, Chen A, Janssens I A, Fu Y, Dai J, Liu L, Lian X, Shen M, Zhu X. 2019a. Plant phenology and global climate change: Current progresses and challenges. Glob Change Biol, 25: 1922–1940

    Google Scholar 

  • Piao S, Zhang X, Chen A, Liu Q, Lian X, Wang X, Peng S, Wu X. 2019b. The impacts of climate extremes on the terrestrial carbon cycle: A review. Sci China Earth Sci, 62: 1551–1563

    Google Scholar 

  • Prevéy J S, Seastedt T R. 2015. Seasonality of precipitation interacts with exotic species to alter composition and phenology of a semi-arid grassland. J Ecol, 102: 1549–1561

    Google Scholar 

  • Reaumur RAF. 1735. Observations du thermomètre, faitesà Paris pendant l’anneé 1735, comparées avec celles qui ont été faites sous la ligne, àl’isle de France, a* Alger et quelques unes de nos isles de l’Ame’rique (in French). Mem Paris Acad Sci, 1735: 545

    Google Scholar 

  • Reich P B. 1995. Phenology of tropical forests: Patterns, causes, and consequences. Can J Bot, 73: 164–174

    Google Scholar 

  • Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N, Prabhat N. 2019. Deep learning and process understanding for data-driven Earth system science. Nature, 566: 195–204

    Google Scholar 

  • Repo T, Hanninen H, Kellomaki S. 1996. The effects of long-term elevation of air temperature and CO on the frost hardiness of Scots pine. Plant Cell Environ, 19: 209–216

    Google Scholar 

  • Richardson A D, Bailey A S, Denny E G, Martin C W, O’Keefe J. 2010. Phenology of a northern hardwood forest canopy. Glob Change Biol, 12: 1174–1188

    Google Scholar 

  • Richardson A D, Anderson R S, Arain M A, Barr A G, Bohrer G, Chen G, Chen J M, Ciais P, Davis K J, Desai A R, Dietze M C, Dragoni D, Garrity S R, Gough C M, Grant R, Hollinger D Y, Margolis H A, McCaughey H, Migliavacca M, Monson R K, Munger J W, Poulter B, Raczka B M, Ricciuto D M, Sahoo A K, Schaefer K, Tian H, Vargas R, Verbeeck H, Xiao J, Xue Y. 2012. Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis. Glob Change Biol, 18: 566–584

    Google Scholar 

  • Richardson A D, Keenan T F, Migliavacca M, Ryu Y, Sonnentag O, Toomey M. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol, 169: 156–173

    Google Scholar 

  • Richardson E, Seeley S, Walker D. 1974. A model for estimating the completion of rest for “Redhaven” and “Elberta” peach trees. Hortscience, 9: 331–332

    Google Scholar 

  • Ryu Y, Baldocchi D D, Ma S, Hehn T. 2008. Interannual variability of evapotranspiration and energy exchange over an annual grassland in California. J Geophys Res-Atmos, 113: D9104

    Google Scholar 

  • Schaber J, Badeck F W. 2002. Evaluation of methods for the combination of phenological time series and outlier detection. Tree Physiol, 22: 973–982

    Google Scholar 

  • Song Z Q, Song X Q, Pan Y Q, Dai K, Shou J J, Chen Q, Huang J X, Tang X R, Huang Z L, Du Y J. 2020. Effects of winter chilling and photo-period on leaf-out and flowering in a subtropical evergreen broadleaved forest in China. For Ecol Manage, 458: 117766

    Google Scholar 

  • Sparks T H, Menzel A. 2002. Observed changes in seasons: An overview. Int J Climatol, 22: 1715–1725

    Google Scholar 

  • Tao Z, Wang H, Liu Y, Xu Y, Dai J. 2017. Phenological response of different vegetation types to temperature and precipitation variations in northern China during 1982–2012. Int J Remote Sens, 38: 3236–3252

    Google Scholar 

  • Tao Z, Wang H, Dai J, Alatalo J, Ge Q. 2018. Modeling spatiotemporal variations in leaf coloring date of three tree species across China. Agric For Meteorol, 249: 310–318

    Google Scholar 

  • Thessen A. 2016. Adoption of machine learning techniques in ecology. One Ecosyst, 1: e8621

    Google Scholar 

  • Thorsen S M, Höglind M. 2010. Modelling cold hardening and dehardening in timothy. Sensitivity analysis and Bayesian model comparison. Agric For Meteorol, 150: 1529–1542

    Google Scholar 

  • Viherä-Aarnio A, Hakkinen R, Junttila O. 2006. Critical night length for bud set and its variation in two photoperiodic ecotypes of Betula pendula. Tree Physiol, 26: 1013–1018

    Google Scholar 

  • Vitasse Y, Delzon S, Dufrêne E, Pontailler J Y, Louvet J M, Kremer A, Michalet R. 2009. Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses?. Agric For Meteorol, 149: 735–744

    Google Scholar 

  • Vitasse Y, Bresson C C, Kremer A, Michalet R, Delzon S. 2010. Quantifying phenological plasticity to temperature in two temperate tree species. Funct Ecol, 24: 1211–1218

    Google Scholar 

  • Vitasse Y, François C, Delpierre N, Dufrêne E, Kremer A, Chuine I, Delzon S. 2011. Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol, 151: 969–980

    Google Scholar 

  • Way D A, Montgomery R A. 2015. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ, 38: 1725–1736

    Google Scholar 

  • Weih M. 2009. Genetic and environmental variation in spring and autumn phenology of biomass willows (Salix spp.): Effects on shoot growth and nitrogen economy. Tree Physiol, 29: 1479–1490

    Google Scholar 

  • Wu C, Chen J M, Black TA, Price D T, Kurz WA, Desai A R, Gonsamo A, Jassal R S, Gough C M, Bohrer G, Dragoni D, Herbst M, Gielen B, Berninger F, Vesala T, Mammarella I, Pilegaard K, Blanken P D. 2013. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Glob Ecol Biogeogr, 22: 994–1006

    Google Scholar 

  • Xie Y, Wang X, Silander J A. 2015. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. Proc Natl Acad Sci USA, 112: 13585–13590

    Google Scholar 

  • Yang J, Reichert P, Abbaspour K C, Yang H. 2007. Hydrological modelling of the Chaohe Basin in China: Statistical model formulation and Bayesian inference. J Hydrol, 340: 167–182

    Google Scholar 

  • Zalamea M, González G. 2008. Leaf fall Phenology in a subtropical wet forest in Puerto Rico: From species to community patterns. Biotropica, 40: 295–304

    Google Scholar 

  • Zha T, Barr A G, van der Kamp G, Black T A, McCaughey J H, Flanagan L B. 2010. Interannual variation of evapotranspiration from forest and grassland ecosystems in western canada in relation to drought. Agric For Meteorol, 150: 1476–1484

    Google Scholar 

  • Zhu K Z, Yuan M W. 1973. Phenology. Beijing: Science Press

    Google Scholar 

  • Zimmerman J K, Wright S J, Calderón O, Pagan M A, Paton S. 2007. Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: The role of annual changes in irradiance. J Trop Ecol, 23: 231–251

    Google Scholar 

  • Zipf L, Primack R B. 2017. Humidity does not appear to trigger leaf out in woody plants. Int J Biometeorol, 61: 2213–2216

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 31770516), the National Key Research and Development Program of China (Grant No. 2017YFA06036001), the 111 Project (Grant No. B18006) and the Fundamental Research Funds for the Central Universities (Grant No. 2018EYT05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongshuo Fu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Li, X., Zhou, X. et al. Progress in plant phenology modeling under global climate change. Sci. China Earth Sci. 63, 1237–1247 (2020). https://doi.org/10.1007/s11430-019-9622-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9622-2

Keywords

Navigation