Skip to main content
Log in

Polar climate system modeling in China: Recent progress and future challenges

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The first fully coupled atmosphere-ocean-sea ice model developed in China was released in the mid-1990s. Since then, significant advances in climate system model developments have been achieved by improving the representations of major physical processes, increasing resolutions, and including an ice-shelf component. There have also been many modeling studies in China on the polar climate system, including weather and sea-ice numerical forecasts to meet the national needs of polar scientific expeditions, assessments of the state-of-the-art coupled model performance, and process-oriented studies. Future model developments and modeling activities will need to address several big scientific questions originating from the polar climate system: i) How will polar ice mass balance evolve and affect global sea level? ii) How can we properly simulate open-ocean deep convection and quantify its role in driving the lower branch of the global overturning circulation? iii) How are Arctic and Antarctic connected and what caused the contrasting sea ice trends in the two polar regions over the last decades? To address these questions, polar climate system modelers will need to analyze extended observational datasets on a global scale and work together with other polar researchers to develop a more comprehensive and sustainable observation system in the polar regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bintanja R, van Oldenborgh G J, Drijfhout S S, Wouters B, Katsman C A. 2013. Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat Geosci, 6: 376–379

    Google Scholar 

  • Böning C W, Rhein M, Dengg J, Dorow C. 2003. Modeling CFC inventories and formation rates of Labrador Sea Water. Geophys Res Lett, 30: 1050

    Google Scholar 

  • Bougeault P, Toth Z, Bishop C, Brown B, Burridge D, Chen D H, Ebert B, Fuentes M, Hamill T M, Mylne K, Nicolau J, Paccagnella T, Park Y Y, Parsons D, Raoult B, Schuster D, Dias P S, Swinbank R, Takeuchi Y, Tennant W, Wilson L, Worley S. 2010. The THORPEX interactive grand global ensemble. Bull Am Meteor Soc, 91: 1059–1072

    Google Scholar 

  • Brandt P, Funk A, Czeschel L, Eden C, Böning C W. 2007. Ventilation and transformation of Labrador Sea Water and its rapid export in the deep Labrador Current. J Phys Oceanogr, 37: 946–961

    Google Scholar 

  • Bromwich D H, Otieno F O, Hines K M, Manning K W, Shilo E. 2013. Comprehensive evaluation of polar weather research and forecasting model performance in the Antarctic. J Geophys Res Atmos, 118: 274–292

    Google Scholar 

  • Carmack E C. 1986. Circulation and mixing in ice-covered waters. In: Untersteiner N, ed. The Geophysics of Sea Ice. Boston: Springer. 641–712

    Google Scholar 

  • Carsey F D. 1980. Microwave observation of the Weddell Polynya. Mon Weather Rev, 108: 2032–2044

    Google Scholar 

  • Chelton D B, deSzoeke R A, Schlax M G, El Naggar K, Siwertz N. 1998. Geographical variability of the first baroclinic Rossby Radius of deformation. J Phys Oceanogr, 28: 433–460

    Google Scholar 

  • Chen D, Yuan X. 2004. A Markov Model for seasonal forecast of Antarctic sea ice. J Clim, 17: 3156–3168

    Google Scholar 

  • Chen K, Jin X and Zhang X. 1997a. Discussion on the sensitivity and climate drift of coupled ocean atmosphere GCM (in Chinese with English abstract). Acta Oceanol Sin, 19: 38–51

    Google Scholar 

  • Chen K, Zhang X and Jin X. 1997b. A coupled oceanatmosphere general circulation model for studies of global climate changes. I. Formulation and performance of the model (in Chinese with English abstract). Acta Oceanol Sin, 19: 21–32

    Google Scholar 

  • Cheng C, Wang Z, Liu C, Xia R. 2017. Vertical modification on depth-integrated ice shelf water plume modeling based on an equilibrium vertical profile of suspended frazil ice concentration. J Phys Oceanogr, 47: 2773–2792

    Google Scholar 

  • Collins W D, Rasch P J, Boville B A, Hack J J, McCaa J R, Williamson D L, Briegleb B P, Bitz C M, Lin S J, Zhang M. 2006. The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J Clim, 19: 2144–2161

    Google Scholar 

  • Comiso J C, Gordon A L. 1987. Recurring polynyas over the Cosmonaut Sea and the Maud Rise. J Geophys Res, 92: 2819–2833

    Google Scholar 

  • Cunningham S A, Marsh R. 2010. Observing and modeling changes in the Atlantic MOC. WIREs Clim Change, 1: 180–191

    Google Scholar 

  • DeConto R M, Pollard D. 2016. Contribution of Antarctica to past and future sea-level rise. Nature, 531: 591–597

    Google Scholar 

  • Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A, Balsamo G, Bauer P, Bechtold P, Beljaars A C M, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J J, Park B K, Peubey C, de Rosnay P, Tavolato C, Thépaut J N, Vitart F. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc, 137: 553–597

    Google Scholar 

  • Delworth T, Manabe S, Stouffer R J. 1993. Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim, 6: 1993–2011

    Google Scholar 

  • Dinniman M, Asay-Davis X, Galton-Fenzi B, Holland P, Jenkins A, Timmermann R. 2016. Modeling ice shelf/ocean interaction in Antarctica: A review. Oceanography, 29: 144–153

    Google Scholar 

  • Dong Z, Smith N R, Kerry K R, Wright S. 1984. Summer Water Masses and Circulation in Prydz Bay, Antarctica (in Chinese with English abstract). Proceedings of Chinese Antarctic Scientific Expedition (Volume II)

  • Fahrbach E, Hoppema M, Rohardt G, Boebel O, Klatt O, Wisotzki A. 2011. Warming of deep and abyssal water masses along the Greenwich meridian on decadal time scales: The Weddell gyre as a heat buffer. Deep Sea Res Part II—Top Stud Oceanogr, 58: 2509–2523

    Google Scholar 

  • Falina A, Sarafanov A, Sokov A. 2007. Variability and renewal of Labrador Sea Water in the Irminger Basin in 1991–2004. J Geophys Res, 112: C01006

    Google Scholar 

  • Fang Y, Chu M, Wu T, Zhang L, Nie S. 2017. Couping of CICE5.0 with BCCCSM2.0 model and its performance evaluation on Arctic sea ice simulation (in Chinese). Acta Oceanol Sin, 39: 33–43

    Google Scholar 

  • Fang Z. 1986. The interaction between Northern Hemisphere subtropical high and Arctic sea ice (in Chinese). Chin Sci Bull, 31: 286–289

    Google Scholar 

  • Fu C. 1981. The possible linkage between variability of Mei-yu over the Yangtze River valley and state of the Antarctic snow and ice (in Chinese with English abstract). Chin Sci Bull, 26: 484–486

    Google Scholar 

  • Garabato A C N, Forryan A, Dutrieux P, Brannigan L, Biddle L C, Heywood K J, Jenkins A, Firing Y L, Kimura S. 2017. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf. Nature, 542: 219–222

    Google Scholar 

  • Goldberg D N, Gourmelen N, Kimura S, Millan R, Snow K. 2019. How accurately should we model ice shelf melt rates? Geophys Res Lett, 46: 189–199

    Google Scholar 

  • Golledge N R, Kowalewski D E, Naish T R, Levy R H, Fogwill C J, Gasson E G W. 2015. The multi-millennial Antarctic commitment to future sea-level rise. Nature, 5 26: 421–425

    Google Scholar 

  • Gordon A L, Comiso J C. 1988. Polynyas in the Southern Ocean. Sci Am, 258: 90–97

    Google Scholar 

  • Gordon A L, Huber B A. 1990. Southern Ocean winter mixed layer. J Geophys Res, 95: 11655–11672

    Google Scholar 

  • Gordon A L, Visbeck M, Comiso J C. 2007. A possible link between the Weddell Polynya and the Southern Annular Mode. J Clim, 20: 2558–2571

    Google Scholar 

  • Gordon A L. 2014. Southern Ocean polynya. Nat Clim Change, 4: 249–250

    Google Scholar 

  • Griffies S M, Harrison M J, Pacanowski R C and Rosati A. 2004. A technical guide to MOM4. GFDL Ocean Group Technical Report No 5. NOAA/Geophysical Fluid Dynamics Laboratory

    Google Scholar 

  • Griffies S M. 2010. Elements of MOM4p1, GFDL Ocean Group Technical Report 6. NOAA/Geophysical Fluid Dynamics Laboratory

    Google Scholar 

  • Guan X, Ou H W, Chen D. 2009. Tidal effect on the dense water discharge, Part 2: A numerical study. Deep Sea Res Part II—Top Stud Oceanogr, 56: 884–894

    Google Scholar 

  • Hall A, Visbeck M. 2002. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J Clim, 15: 3043–3057

    Google Scholar 

  • Heuzé C, Heywood K J, Stevens D P, Ridley J K. 2013. Southern Ocean bottom water characteristics in CMIP5 models. Geophys Res Lett, 40: 1409–1414

    Google Scholar 

  • Holland M M, Blanchard-Wrigglesworth E, Kay J, Vavrus S. 2013. Initial-value predictability of Antarctic sea ice in the community climate system model 3. Geophys Res Lett, 40: 2121–2124

    Google Scholar 

  • Hosking J S, Orr A, Marshall G J, Turner J, Phillips T. 2013. The influence of the Amundsen-Bellingshausen seas low on the climate of west Antarctica and its representation in coupled climate model simulations. J Clim, 26: 6633–6648

    Google Scholar 

  • Hunke E C, Lipscomb W H, Turner A K, Jeffery N and Elliott S. 2010. CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 4.1 LA-CC-06-012. Los Alamos National Laboratory

    Google Scholar 

  • Hunke E C, Lipscomb W H, Turner A K, Jeffery N and Elliott S. 2008. CICE: The Los Alamos sea ice model, documentation and software user’s manual version 4.0, LA-CC-06-012. Los Alamos National Laboratory

    Google Scholar 

  • Hunke E C, Lipscomb W H, Turner A K, Jeffery N and Elliott S. 2013. CICE: The Los Alamos Sea Ice Model, documentation and software user’s manual, version 5.0 LA-CC-06-012. Los Alamos National Laboratory

    Google Scholar 

  • Jordan J R, Holland P R, Goldberg D, Snow K, Arthern R, Campin J M, Heimbach P, Jenkins A. 2018. Ocean-forced ice-shelf thinning in a synchronously coupled ice-ocean model. J Geophys Res Oceans, 123: 864–882

    Google Scholar 

  • Korhonen H, Carslaw K S, Forster P M, Mikkonen S, Gordon N D, Kokkola H. 2010. Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds. Geophys Res Lett, 37, doi: https://doi.org/10.1029/2009GL041320

  • Lambeck K, Chappell J. 2001. Sea level change through the last glacial cycle. Science, 292: 679–686

    Google Scholar 

  • Lewis E L. 1985. The “Ice Pump”, a mechanism for ice-shelf melting. In: Glaciers, Ice Sheets, and Sea Level: Effect of a CO2-Induced Climate Change, Rep. DOE/EV/60235-1. Washington, D. C: U.S. Dep. of Energy, 275–278

    Google Scholar 

  • Li L, Xie X, Wang B, Dong L. 2012. Evaluating the Performances of GAMIL1.0 and GAMIL2.0 during TWPICE with CAPT. Atmos Ocean Sci Lett, 5: 38–42

    Google Scholar 

  • Liang X, Yang Q, Nerger L, Losa S N, Zhao B, Zheng F, Zhang L, Wu L. 2017. Assimilating Copernicus SST Data into a pan-Arctic ice-ocean coupled model with a local SEIK filter. J Atmos Ocean Technol, 34: 1985–1999

    Google Scholar 

  • Lin P, Yu Y, Liu H. 2013. Oceanic climatology in the coupled model FGOALS-g2: Improvements and biases. Adv Atmos Sci, 30: 819–840

    Google Scholar 

  • Lindsay R W, Holland D M, Woodgate R A. 2004. Halo of low ice concentration observed over the Maud Rise seamount. Geophys Res Lett, 31: L13302

    Google Scholar 

  • Liu C, Wang Z, Cheng C, Xia R, Li B, Xie Z. 2017. Modeling modified circumpolar deep water intrusions onto the Prydz Bay continental shelf, east Antarctica. J Geophys Res Oceans, 122: 5198–5217

    Google Scholar 

  • Liu C, Wang Z, Cheng C, Wu Y, Xia R, Li B, Li X. 2018. On the modified Circumpolar Deep Water upwelling over the Four Ladies Bank in Prydz Bay, East Antarctica. J Geophys Res Oceans, 123: 7819–7838

    Google Scholar 

  • Liu H, Lin P, Yu Y, Zhang X. 2012. The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2. Acta Meteorol Sin, 26: 318–329

    Google Scholar 

  • Liu H, Zhang X, Li W, Yu Y, Yu R. 2004. An eddy-permitting oceanic general circulation model and its preliminary evaluation. Adv Atmos Sci, 21: 675–690

    Google Scholar 

  • Liu J, Curry J A, Martinson D G. 2004. Interpretation of recent Antarctic sea ice variability. Geophys Res Lett, 31: L02205

    Google Scholar 

  • Losch M, Menemenlis D, Campin J M, Heimbach P, Hill C. 2010. On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Model, 33: 129–144

    Google Scholar 

  • Losch M. 2008. Modeling ice shelf cavities in a z coordinate ocean general circulation model. J Geophys Res, 113: C08043

    Google Scholar 

  • Lozier M S. 2012. Overturning in the North Atlantic. Annu Rev Mar Sci, 4: 291–315

    Google Scholar 

  • Lozier M S, Li F, Bacon S, Bahr F, Bower A S, Cunningham S A, de Jong M F, de Steur L, deYoung B, Fischer J, Gary S F, Greenan B J W, Holliday N P, Houk A, Houpert L, Inall M E, Johns W E, Johnson H L, Johnson C, Karstensen J, Koman G, Le Bras I A, Lin X, Mackay N, Marshall D P, Mercier H, Oltmanns M, Pickart R S, Ramsey A L, Rayner D, Straneo F, Thierry V, Torres D J, Williams R G, Wilson C, Yang J, Yashayaev I, Zhao J. 2019. A sea change in our view of overturning in the subpolar North Atlantic. Science, 363: 516–521

    Google Scholar 

  • Lu Y, Zhou M, Wu T. 2013. Validation of parameterizations for the surface turbulent fluxes over sea ice with CHINARE 2010 and SHEBA data. Polar Res, 32: 291–294

    Google Scholar 

  • Marsh R. 2000. Recent variability of the North Atlantic thermohaline circulation inferred from surface heat and freshwater fluxes. J Clim, 13: 3239–3260

    Google Scholar 

  • Marshall J, Adcroft A, Hill C, Perelman L, Heisey C. 1997a. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res, 102: 5753–5766

    Google Scholar 

  • Marshall J, Hill C, Perelman L, Adcroft A. 1997b. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res, 102: 5733–5752

    Google Scholar 

  • Marshall J, Armour K C, Scott J R, Kostov Y, Hausmann U, Ferreira D, Shepherd T G, Bitz C M. 2014. The ocean’s role in polar climate change: Asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos Trans R Soc A-Math Phys Eng Sci, 372: 20130040

    Google Scholar 

  • Marshall J, Schott F. 1999. Open-ocean convection: Observations, theory, and models. Rev Geophys, 37: 1–64

    Google Scholar 

  • Martinson D G. 1990. Evolution of the southern ocean winter mixed layer and sea ice: Open ocean deepwater formation and ventilation. J Geophys Res, 95: 11641–11654

    Google Scholar 

  • Mathiot P, Jenkins A, Harris C, Madec G. 2017. Explicit representation and parametrised impacts of under ice shelf seas in the z * coordinate ocean model NEMO 3.6. Geosci Model Dev, 10: 2849–2874

    Google Scholar 

  • Mauritzen C, Häkkinen S. 1999. On the relationship between dense water formation and the “meridional overturning cell” in the North Atlantic Ocean. Deep Sea Res Part I—Oceanogr Res Paper, 46: 877–894

    Google Scholar 

  • Menemenlis D, Heimbach P, Hill C, Lee T, Nguyen A, Schodlok M and Zhang H. 2008. ECCO2: High-resolution global ocean and sea ice data synthesis. AGU Fall Meeting Abstracts ID: OS31C-1292

  • Mu L, Yang Q, Losch M, Losa S N, Ricker R, Nerger L, Liang X. 2018. Improving sea ice thickness estimates by assimilating CryoSat-2 and SMOS sea ice thickness data simultaneously. Q J R Meteorol Soc, 144: 529–538

    Google Scholar 

  • Neale R B, Richter J H, Conley A J, Park S, Lauritzen P H, Gettelman A. 2010. Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Technical Notes

    Google Scholar 

  • Ou H W, Guan X, Chen D. 2009. Tidal effect on the dense water discharge. Part 1: Analytical model. Deep Sea Res Part II—Top Stud Oceanogr, 56: 874–883

    Google Scholar 

  • Park Y Y, Buizza R, Leutbecher M. 2008. TIGGE: Preliminary results on comparing and combining ensembles. Q J R Meteorol Soc, 134: 2029–2050

    Google Scholar 

  • Parkinson C L, Cavalieri D J. 2012. Antarctic sea ice variability and trends, 1979–2010. Cryosphere, 6: 871–880

    Google Scholar 

  • Parkinson C L, Comiso J C. 2013. On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophys Res Lett, 40: 1356–1361

    Google Scholar 

  • Parkinson C L, Washington W M. 1979. A large-scale numerical model of sea ice. J Geophys Res, 84: 311–337

    Google Scholar 

  • Pham D T, Verron J, Roubaud M C. 1998. A singular evolutive extended Kalman filter for data assimilation in oceanography. J Marine Syst, 16: 323–340

    Google Scholar 

  • Pickart R S, Torres D J, Clarke R A. 2002. Hydrography of the Labrador Sea during active convection. J Phys Oceanogr, 32: 428–457

    Google Scholar 

  • Pickart R S, Straneo F, Moore G W K. 2003. Is Labrador Sea Water formed in the Irminger Basin? Deep Sea Res Part I-Oceanographic Res Papers, 50: 23–52

    Google Scholar 

  • Qiao F, Song Z, Bao Y, Song Y, Shu Q, Huang C, Zhao W. 2013. Development and evaluation of an Earth System Model with surface gravity waves. J Geophys Res Oceans, 118: 4514–4524

    Google Scholar 

  • Qiu B, Zhang L, Chu M. 2015. Performance analysis of arctic sea ice simulation in climate system models (in Chinese with English abstract). Chin J Polar Res, 27: 47–55

    Google Scholar 

  • Raphael M N. 2007. The influence of atmospheric zonal wave three on Antarctic sea ice variability. J Geophys Res, 112: D12112

    Google Scholar 

  • Rayner D, Hirschi J J M, Kanzow T, Johns W E, Wright P G, Frajka-Williams E, Bryden H L, Meinen C S, Baringer M O, Marotzke J, Beal L M, Cunningham S A. 2011. Monitoring the Atlantic meridional overturning circulation. Deep Sea Res Part II-Top Stud Oceanogr, 58: 1744–1753

    Google Scholar 

  • Rhein M, Fischer J, Smethie W M, Smythe-Wright D, Weiss R F, Mertens C, Min D H, Fleischmann U, Putzka A. 2002. Labrador Sea Water: Pathways, CFC inventory, and formation rates. J Phys Oceanogr, 32: 648–665

    Google Scholar 

  • Rhein M, Kieke D, Hüttl-Kabus S, Roessler A, Mertens C, Meissner R, Klein B, Böning C W, Yashayaev I. 2011. Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic. Deep Sea Res Part II—Top Stud Oceanogr, 58: 1819–1832

    Google Scholar 

  • Schaffer J, Timmermann R, Arndt J E, Savstrup Kristensen S, Mayer C, Morlighem M, Steinhage D. 2016. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry. Earth Syst Sci Data, 8: 543–557

    Google Scholar 

  • Schodlok M P, Menemenlis D, Rignot E J. 2016. Ice shelf basal melt rates around Antarctica from simulations and observations. J Geophys Res Oceans, 121: 1085–1109

    Google Scholar 

  • Shu Q, Song Z, Qiao F. 2015. Assessment of sea ice simulations in the CMIP5 Models. Cryosphere, 9: 399–409

    Google Scholar 

  • Shu Q, Ma H, Qiao F. 2012. Observation and simulation of a floe drift near the North Pole. Ocean Dyn, 62: 1195–1200

    Google Scholar 

  • Simmonds I, Jacka T H. 1995. Relationships between the interannual variability of Antarctic sea ice and the Southern Oscillation. J Clim, 8: 637–647

    Google Scholar 

  • Smith N R, Zhaoqian D, Kerry K R, Wright S. 1984. Water masses and circulation in the region of Prydz Bay, Antarctica. Deep Sea Res Part A—Oceanogr Res Paper, 31: 1121–1147

    Google Scholar 

  • Smith R, Jones P, Briegleb B, Bryan F, Danabasoglu G, Dennis J, Hecht M. 2010. The parallel ocean program (POP) reference manual. Los Alamos National Laboratory, LAUR-10-01853

    Google Scholar 

  • Stammerjohn S, Massom R, Rind D, Martinson D. 2012. Regions of rapid sea ice change: An inter-hemispheric seasonal comparison. Geophys Res Lett, 39: L06501

    Google Scholar 

  • Stössel A, Zhang Z, Vihma T. 2011. The effect of alternative real-time wind forcing on Southern Ocean sea ice simulations. J Geophys Res, 116: C11021

    Google Scholar 

  • Stouffer R J, Yin J, Gregory J M, Dixon K W, Spelman M J, Hurlin W, Weaver A J, Eby M, Flato G M, Hasumi H, Hu A, Jungclaus J H, Kamenkovich I V, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier W R, Robitaille D Y, Sokolov A, Vettoretti G, Weber S L. 2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim, 19: 1365–1387

    Google Scholar 

  • Stroeve J C, Kattsov V, Barrett A, Serreze M, Pavlova T, Holland M, Meier W N. 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys Res Lett, 39: L16502

    Google Scholar 

  • Sun Q, Zhang L, Zhang Z, Yang Q. 2016. Numerical simulation of summer katabatic wind at Zhongshan station, Antarctica: A case study (in Chinese with English abstract). Acta Oceanol Sin, 38: 71–81

    Google Scholar 

  • Sun Q Z, Ding Z M, Shen H, Yang Q H & Zhang L. 2017. Polar numerical weather prediction system: Preliminary establishment and application (in Chinese with English abstract). Marine Forecast, 34: 1–10

    Google Scholar 

  • Talley L D, Reid J L, Robbins P E. 2003. Data-based meridional overturning streamfunctions for the global ocean. J Clim, 16: 3213–3226

    Google Scholar 

  • Tan H, Zhang L, Chu M, Wu T, Qiu B, Li J. 2015. An analysis of simulated global sea ice extent, thickness, and causes of error with the BCCCSM Model (in Chinese with English abstract). Chin J Atmos Sci, 39: 197–209

    Google Scholar 

  • Turner J, Bracegirdle T J, Phillips T, Marshall G J, Hosking J S. 2013. An initial assessment of Antarctic sea ice extent in the CMIP5 models. J Clim, 26: 1473–1484

    Google Scholar 

  • Turner J, Comiso J C, Marshall G J, Lachlan-Cope T A, Bracegirdle T, Maksym T, Meredith M P, Wang Z, Orr A. 2009. Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett, 36: L08502

    Google Scholar 

  • Våge K, Pickart R S, Thierry V, Reverdin G, Lee C M, Petrie B, Agnew T A, Wong A, Ribergaard M H. 2009. Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat Geosci, 2: 67–72

    Google Scholar 

  • Venables H J, Meredith M P. 2014. Feedbacks between ice cover, ocean stratification, and heat content in Ryder Bay, western Antarctic Peninsula. J Geophys Res Oceans, 119: 5323–5336

    Google Scholar 

  • Wang Z, Huang S. 1994. The responses of atmospheric circulations to Antarctic sea ice anomalies in July (in Chinese with English abstract). Meteor Sci Sin, 14: 311–321

    Google Scholar 

  • Wang Z, Wu Y, Lin X, Liu C, Xie Z. 2017. Impacts of open-ocean deep convection in the Weddell Sea on coastal and bottom water temperature. Clim Dyn, 48: 2967–2981

    Google Scholar 

  • Wang Z, Turner J, Sun B, Li B, Liu C. 2014. Cyclone-induced rapid creation of extreme Antarctic sea ice conditions. Sci Rep, 4: 5317

    Google Scholar 

  • Wang Z, Zhang X, Guan Z, Sun B, Yang X, Liu C. 2015. An atmospheric origin of the multi-decadal bipolar seesaw. Sci Rep, 5: 8909

    Google Scholar 

  • Wang Z, Meredith M P. 2008. Density-driven Southern Hemisphere subpolar gyres in coupled climate models. Geophys Res Lett, 35: L14608

    Google Scholar 

  • Wang Z. 2013. On the response of Southern Hemisphere subpolar gyres to climate change in coupled climate models. J Geophys Res Oceans, 118: 1070–1086

    Google Scholar 

  • Williams G D, Herraiz-Borreguero L, Roquet F, Tamura T, Ohshima K I, Fukamachi Y, Fraser A D, Gao L, Chen H, McMahon C R, Harcourt R, Hindell M. 2016. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nat Commun, 7: 12577

    Google Scholar 

  • Winton M. 2000. A reformulated three-layer sea ice model. J Atmos Ocean Technol, 17: 525–531

    Google Scholar 

  • Wu T, Yu R, Zhang F. 2008. A modified dynamic framework for the atmospheric spectral model and its application. J Atmos Sci, 65: 2235–2253

    Google Scholar 

  • Wu T, Yu R, Zhang F, Wang Z, Dong M, Wang L, Jin X, Chen D, Li L. 2010. The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Clim Dyn, 34: 123–147

    Google Scholar 

  • Wu T, Song L, Li W, Wang Z, Zhang H, Xin X, Zhang Y, Zhang L, Li J, Wu F, Liu Y, Zhang F, Shi X, Chu M, Zhang J, Fang Y, Wang F, Lu Y, Liu X, Wei M, Liu Q, Zhou W, Dong M, Zhao Q, Ji J, Li L, Zhou M. 2014. An overview of BCC climate system model development and application for climate change studies. Acta Meteorol Sin, 28: 34–56

    Google Scholar 

  • Wu T. 2012. A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations. Clim Dyn, 38: 725–744

    Google Scholar 

  • Wu Y, Zhai X, Wang Z. 2016. Impact of synoptic atmospheric forcing on the mean ocean circulation. J Clim, 29: 5709–5724

    Google Scholar 

  • Wu Y, Wang Z, Liu C. 2017. On the response of the Lorenz energy cycle for the Southern Ocean to intensified westerlies. J Geophys Res Oceans, 122: 2465–2493

    Google Scholar 

  • Xie Z and Wang Z. 2017. The inter-comparison study between atmospheric reanalysis data and station data in Prydz Bay (in Chinese with English abstract). Polar Res, 29: 368–377

    Google Scholar 

  • Yang Q, Losa S N, Losch M, Liu J, Zhang Z, Nerger L, Yang H. 2015a. Assimilating summer sea-ice concentration into a coupled ice-ocean model using a LSEIK filter. Ann Glaciol, 56: 38–44

    Google Scholar 

  • Yang Q, Losa S N, Losch M, Tian-Kunze X, Nerger L, Liu J, Kaleschke L, Zhang Z. 2015b. Assimilating SMOS sea ice thickness into a coupled ice-ocean model using a local SEIK filter. J Geophys Res Oceans, 119: 6680–6692

    Google Scholar 

  • Yang Q, Losch M, Losa S N, Jung T, Nerger L. 2016a. Taking into account atmospheric uncertainty improves sequential assimilation of SMOS sea ice thickness data in an ice-ocean model. J Atmos Ocean Technol, 33: 397–407

    Google Scholar 

  • Yang Q, Losch M, Losa S, Jung T, Nerger L, Lavergne T. 2016b. The challenge and benefit of using sea ice concentration satellite data products with uncertainty estimates in summer sea ice data assimilation. Cryosphere Discuss, 10: 761–774

    Google Scholar 

  • Yang X, Huang S. 1992. A numerical experiment of climate effect of Antarctic sea ice during the Northern Hemisphere summer (in Chinese). Chin J Atmos Sci, 16: 80–89

    Google Scholar 

  • Yashayaev I. 2007. Hydrographic changes in the Labrador Sea, 1960–2005. Prog Oceanogr, 73: 242–276

    Google Scholar 

  • Yashayaev I, Loder J W. 2017. Further intensification of deep convection in the Labrador Sea in 2016. Geophys Res Lett, 44: 1429–1438

    Google Scholar 

  • Yu R, Jin X, Zhang X. 1995. Design and numerical simulation of an Arctic Ocean circulation and thermodynamic sea-ice model. Adv Atmos Sci, 12: 289–310

    Google Scholar 

  • Yu Y, Zheng W, Wang B, Liu H, Liu J. 2011. Versions g1.0 and g1.1 of the LASG/IAP Flexible Global Ocean-Atmosphere-Land System model. Adv Atmos Sci, 28: 99–117

    Google Scholar 

  • Yu Y. 2014. Overview of FGOALS contribution to international climate modeling community during past years. In: Zhou T, Yu Y, Liu Y, Wang B, eds. Flexible Global Ocean-Atmosphere-Land System Model. Berlin: Springer

    Google Scholar 

  • Yuan X, Chen D, Li C, Wang L, Wang W. 2016. Arctic sea ice seasonal prediction by a linear Markov model. J Clim, 29: 8151–8173

    Google Scholar 

  • Zeng Q C, Zhang X H, Liang X Z, Chen S F. 1989. Documentation of IAP (Institute of Atmospheric Physics) two-level atmospheric general circulation model. DOE/ER/60314-H1. Washington, D. C.: U.S. Dept. of Energy: 383

    Google Scholar 

  • Zhang X, Liang X. 1989. A numerical world ocean general circulation model. Adv Atmos Sci, 6: 44–61

    Google Scholar 

  • Zhang X H, Bao N, Yu R C and Wang W Q. 1992. Coupling scheme experiments based on an atmospheric and an oceanic GCM (in Chinese). Chin J Atmos Sci, 16: 129–144

    Google Scholar 

  • Zhang X H, Chen K M, Jin X Z, Lin W Y, Yu Y Q. 1996. Simulation of thermohaline circulation with a twenty-layer oceanic general circulation model. Theor Appl Climatol, 55: 65–87

    Google Scholar 

  • Zhang Z, Vihma T, Stössel A, Uotila P. 2015. The role of wind forcing from operational analyses for the model representation of Antarctic coastal sea ice. Ocean Model, 94: 95–111

    Google Scholar 

  • Zhang Z, Uotila P, Stössel A, Vihma T, Liu H, Zhong Y. 2018. Seasonal southern hemisphere multi-variable reflection of the southern annular mode in atmosphere and ocean reanalyses. Clim Dyn, 50: 1451–1470

    Google Scholar 

  • Zhao J, Cheng B, Yang Q, Vihma T, Zhang L. 2017. Observations and modelling of first-year ice growth and simultaneous second-year ice ablation in the Prydz Bay, East Antarctica. Ann Glaciol, 58: 59–67

    Google Scholar 

  • Zhou L, Bao Q, Liu Y, Wu G, Wang W C, Wang X, He B, Yu H, Li J. 2015. Global energy and water balance: Characteristics from Finite-volume Atmospheric Model of the IAP/LASG (FAMIL1). J Adv Model Earth Syst, 7: 1–20

    Google Scholar 

  • Zhou T, Yu R, Wang Z and Wu T. 2005. Atmospheric General Circulation Model-SAMIL and Its Coupled General Circulation Model-FGOALS (in Chinese with English abstract). Impacts of the Ocean-Land-Atmosphere Interaction Over the Asian Monsoon Domain on the Climate Change Over China, 4

  • Zwally H J, Gloersen P. 1977. Passive microwave images of the polar regions and research applications. Polar Record, 18: 431–450

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Chengyan Liu, Dr Yang Wu, Mr Rui Bian, Ms Mingyi Gu, Ms Qing Qin and Ms Jiangchao Qian for their assistance during the preparation of this manuscript. This work was supported by the Global Change Research Program of China (Grant No. 2015CB953900), the Major State Basic Research Development Program of China (Grant No. 2016YFA0601804), the National Natural Science Foundation of China (Grant No. 41876220), and the Fundamental Research Funds for the Central Universities (Grant Nos. 2017B04814 & 2017B20714).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaomin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Chen, D. Polar climate system modeling in China: Recent progress and future challenges. Sci. China Earth Sci. 62, 1076–1091 (2019). https://doi.org/10.1007/s11430-018-9355-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9355-2

Keywords

Navigation