Skip to main content
Log in

Simulated impacts of atmospheric gravity waves on the initiation and optical emissions of sprite halos in the mesosphere

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The correlation between atmospheric gravity waves (GWs) and Transient Luminous Events (TLEs) has been poorly studied using both synchronous observations and numerical simulations. To investigate the modulation effects of GWs on TLEs, a troposphere-mesosphere quasi-electrostatic field model is developed in three-dimensional Cartesian coordinates, and the effects of GW perturbations on the initiation and optical emissions of sprite halos are simulated using the model. Simulation results indicate that the atmospheric density at lower ionosphere altitudes becomes inhomogeneous due to GW perturbations, and sprite halos tend to initiate in the GW troughs due to the lower electric breakdown threshold. GW perturbations cause the deformation of sprite halos, strong luminous regions distribute mainly along the GW troughs while optical intensities along the GW peaks is relatively weak. Larger GW perturbations lead to more pronounced deformation of sprite halos, however, stronger lightning discharges in the troposphere result in less optical perturbations of sprite halos. The observed luminous intensities and optical morphology of sprite halos are also affected by the observing orientations and the lightning polarities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrington-Leigh C P, Inan U S, Stanley M. 2001. Identification of sprites and elves with intensified video and broadband array photometry. J Geophys Res, 106: 1741–1750

    Article  Google Scholar 

  • Cummer S A, Jaugey N, Li J, Lyons W A, Nelson T E, Gerken E A. 2006. Submillisecond imaging of sprite development and structure. Geophys Res Lett, 33: 347–360

    Article  Google Scholar 

  • Davies D K. 1983. Measurements of swarm parameters in dry air. Theoretical Notes, Westinghouse R & D Center, Note, 346

    Google Scholar 

  • Dejnakarintra M, Park C G. 1974. Lightning-induced electric fields in the ionosphere. J Geophys Res, 79: 1903–1910

    Article  Google Scholar 

  • Dewan E M, Picard R H, O’Neil R R, Gardiner H A, Gibson J, Mill J D, Richards E, Kendra M, Gallery W O. 1998. MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys Res Lett, 25: 939–942

    Article  Google Scholar 

  • Ebert U, Nijdam S, Li C, Luque A, Briels T, van Veldhuizen E. 2010. Review of recent results on streamer discharges and discussion of their relevance for sprites and lightning. J Geophys Res, 115: A00E43

    Article  Google Scholar 

  • Franz R C, Nemzek R J, Winckler J R. 1990. Television image of a large upward electrical discharge above a thunderstorm system. Science, 249: 48–51

    Article  Google Scholar 

  • Frey H U, Mende S B, Cummer S A, Li J, Adachi T, Fukunishi H, Takahashi Y, Chen A B, Hsu R R, Su H T, Chang Y S. 2007. Halos generated by negative cloud-to-ground lightning. Geophys Res Lett, 34: L18801

    Article  Google Scholar 

  • Glukhov V S, Pasko V P, Inan U S. 1992. Relaxation of transient lower ionospheric disturbances caused by lightning-whistler-induced electron precipitation bursts. J Geophys Res, 97: 16971–16979

    Article  Google Scholar 

  • Han F, Cummer S A. 2010. Midlatitude nighttime D region ionosphere variability on hourly to monthly time scales. J Geophys Res, 115: A09323

    Google Scholar 

  • Hegerberg R, Reid I D. 1980. Electron drift velocities in air. Aust J Phys, 33: 227–238

    Article  Google Scholar 

  • Lay E H. 2018. Ionospheric irregularities and acoustic/gravity wave activity above low-latitude thunderstorms. Geophys Res Lett, 45: 90–97

    Article  Google Scholar 

  • Liu N, Pasko V P. 2004. Effects of photoionization on propagation and branching of positive and negative streamers in sprites. J Geophys Res, 109: A04301

    Google Scholar 

  • Liu N, Dwyer J R, Stenbaek-Nielsen H C, McHarg M G. 2015. Sprite streamer initiation from natural mesospheric structures. Nat Commun, 6: 7540

    Article  Google Scholar 

  • Liu N, Boggs L D, Cummer S A. 2016. Observation-constrained modeling of the ionospheric impact of negative sprites. Geophys Res Lett, 43: 2365–2373

    Article  Google Scholar 

  • Lu G, Cummer S A, Tian Y, Zhang H, Lyu F, Wang T, Stanley M A, Yang J, Lyons W A. 2016. Sprite produced by consecutive impulse charge transfers following a negative stroke: Observation and simulation. J Geophys Res Atmos, 121: 4082–4092

    Article  Google Scholar 

  • Luque A, Ebert U. 2009. Emergence of sprite streamers from screeningionization waves in the lower ionosphere. Nat Geosci, 2: 757–760

    Article  Google Scholar 

  • Luque A, Ebert U. 2010. Sprites in varying air density: Charge conservation, glowing negative trails and changing velocity. Geophys Res Lett, 37: L06806

    Article  Google Scholar 

  • Marshall R A, Yue J, Lyons W A. 2015. Numerical simulation of an elve modulated by a gravity wave. Geophys Res Lett, 42: 6120–6127

    Article  Google Scholar 

  • Moudry D, Stenbaek-Nielsen H, Sentman D, Wescott E. 2003. Imaging of elves, halos and sprite initiation at time resolution. J Atmos Sol-Terr Phys, 65: 509–518

    Article  Google Scholar 

  • Papadopoulos K, Milikh G, Gurevich A, Drobot A, Shanny R. 1993. Ionization rates for atmospheric and ionospheric breakdown. J Geophys Res, 98: 17593–17596

    Article  Google Scholar 

  • Pasko V P. 1996. Dynamic coupling of quasi-electrostatic thundercloud fields to the mesosphere and lower ionosphere: Sprites and jets. Doctoral Dissertation. California: Stanford University

    Google Scholar 

  • Pasko V P. 2003. Electric jets. Nature, 423: 927–928

    Article  Google Scholar 

  • Pasko V P, Inan U S. 1994. Recovery signatures of lightning-associated VLF perturbations as a measure of the lower ionosphere. J Geophys Res, 99: 17523–17538

    Article  Google Scholar 

  • Pasko V P, Inan U S, Taranenko Y N, Bell T F. 1995. Heating, ionization and upward discharges in the mesosphere, due to intense quasi-electrostatic thundercloud fields. Geophys Res Lett, 22: 365–368

    Article  Google Scholar 

  • Pasko V P, Inan U S, Bell T F, Taranenko Y N. 1997a. Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J Geophys Res, 102: 4529–4561

    Article  Google Scholar 

  • Pasko V P, Inan U S, Bell T F. 1997b. Sprites as evidence of vertical gravity wave structures above mesoscale thunderstorms. Geophys Res Lett, 24: 1735–1738

    Article  Google Scholar 

  • Pasko V P, Inan U S, Bell T F. 1998. Spatial structure of sprites. Geophys Res Lett, 25: 2123–2126

    Article  Google Scholar 

  • Pasko V P, Inan U S, Bell T F. 2000. Fractal structure of sprites. Geophys Res Lett, 27: 497–500

    Article  Google Scholar 

  • Picone J M, Hedin A E, Drob D P, Aikin A C. 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res, 107: SIA 15–1–SIA 15–16

    Article  Google Scholar 

  • Qie X S, Lu D R, Bian J C, Yang J. 2009. Transient luminous events (TLEs) at high altitudes above thunderstorms and their possible effects (in Chinese). Adv Earth Sci, 24: 286–296

    Google Scholar 

  • Qie X S, Zhang Y J, Yuan T, Zhang Q, Zhang T, Zhu B, Lu W, Ma M, Yang J, Zhou Y, Feng G. 2015. A review of atmospheric electricity research in China. Adv Atmos Sci, 32: 169–191

    Article  Google Scholar 

  • Qin J, Celestin S, Pasko V P. 2011. On the inception of streamers from sprite halo events produced by lightning discharges with positive and negative polarity. J Geophys Res, 116: A06305

    Google Scholar 

  • Qin J, Pasko V P, McHarg M G, Stenbaek-Nielsen H C. 2014. Plasma irregularities in the D-region ionosphere in association with sprite streamer initiation. Nat Commun, 5: 3740

    Article  Google Scholar 

  • Rodger C J. 2003. Subionospheric VLF perturbations associated with lightning discharges. J Atmos Sol-Terr Phys, 65: 591–606

    Article  Google Scholar 

  • Rowland H L, Fernsler R F, Bernhardt P A. 1996. Breakdown of the neutral atmosphere in the D region due to lightning driven electromagnetic pulses. J Geophys Res, 101: 7935–7945

    Article  Google Scholar 

  • Sabbas F T S, Rampinelli V T, Santiago J, Stamus P, Vadas S L, Fritts D C, Taylor M J, Pautet P D, Dolif Neto G, Pinto O. 2009. Characteristics of sprite and gravity wave convective sources present in satellite IR images during the SpreadFEx 2005 in Brazil. Ann Geophys, 27: 1279–1293

    Article  Google Scholar 

  • Sentman D D, Wescott E M, Osborne D L, Hampton D L, Heavner M J. 1995. Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites. Geophys Res Lett, 22: 1205–1208

    Article  Google Scholar 

  • Sentman D D, Wescott E M, Picard R H, Winick J R, Stenbaek-Nielsen H C, Dewan E M, Moudry D R, São Sabbas F T, Heavner M J, Morrill J. 2003. Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm. J Atmos Sol-Terr Phys, 65: 537–550

    Article  Google Scholar 

  • Siefring C L, Morrill J S, Sentman D D, Heavner M J. 2010. Simultaneous near-infrared and visible observations of sprites and acoustic-gravity waves during the EXL98 campaign. J Geophys Res, 115: A00E57–90

    Article  Google Scholar 

  • Silagadze Z K. 2018. Schumann resonance transients and the search for gravitational waves. Mod Phys Lett A, 33: 1850023

    Article  Google Scholar 

  • Sipler D P, Biondi M A. 1972. Measurements of O(1 D) quenching rates in the F region. J Geophys Res, 77: 6202–6212

    Article  Google Scholar 

  • Swenson G R, Liu A Z. 1998. A model for calculating acoustic gravity wave energy and momentum flux in the mesosphere from OH airglow. Geophys Res Lett, 25: 477–480

    Article  Google Scholar 

  • Taranenko Y N, Inan U S, Bell T F. 1993a. Interaction with the lower ionosphere of electromagnetic pulses from lightning: Heating, attachment, and ionization. Geophys Res Lett, 20: 1539–1542

    Article  Google Scholar 

  • Taranenko Y N, Inan U S, Bell T F. 1993b. The interaction with the lower ionosphere of electromagnetic pulses from lightning: Excitation of optical emissions. Geophys Res Lett, 20: 2675–2678

    Article  Google Scholar 

  • Tong L, Hiraki Y, Nanbu K, Fukunishi H. 2005. Release of positive charges producing sprite halos. J Atmos Sol-Terr Phys, 67: 829–838

    Article  Google Scholar 

  • Valence-Jones A. 1974. Aurora. D. Dordrecht: Reidel Publishing Company. 119

    Book  Google Scholar 

  • van der Velde O A, Montanyà J, Füllekrug M, Soula S. 2011. Gravity waves, meteor trails and asymmetries in elves. In: XIV International Conference on Atmospheric Electricity. 1–4

    Google Scholar 

  • Williams E R. 1998. The positive charge reservoir for sprite-producing lightning. J Atmos Sol-Terr Phys, 60: 689–692

    Article  Google Scholar 

  • Wu M L, Xu J Y. 2005. A time-dependent quasi-three-dimensional QEF model of red sprites (in Chinese). Chin J Geophys, 48: 480–486

    Article  Google Scholar 

  • Xu J, Li Q, Yue J, Hoffmann L, Straka Iii W C, Wang C, Liu M, Yuan W, Han S, Miller S D, Sun L, Liu X, Liu W, Yang J, Ning B. 2015. Concentric gravity waves over northern China observed by an airglow imager network and satellites. J Geophys Res-Atmos, 120: 11,058–11,078

    Article  Google Scholar 

  • Yang J, Qie X S, Zhang G S, Zhao Y, Zhang T. 2008. Red sprites over thunderstorms in the coast of Shandong Province, China (in Chinese). Chin Sci Bull, 53: 1079–1086

    Google Scholar 

  • Yang J, Lu G, Liu N, Sato M, Feng G, Wang Y, Chou J K. 2017. Sprite possibly produced by two distinct positive cloud-to-ground lightning flashes. Terr Atmos Ocean Sci, 28: 609–624

    Article  Google Scholar 

  • Yue J, Vadas S L, She C Y, Nakamura T, Reising S C, Liu H L, Stamus P, Krueger D A, Lyons W, Li T. 2009. Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado. J Geophys Res, 114: D06104

    Article  Google Scholar 

  • Yue J, Lyons W A. 2015. Structured elves: Modulation by convectively generated gravity waves. Geophys Res Lett, 42: 1004–1011

    Article  Google Scholar 

  • Zhang Y J, Ma M, Lu W T, Tao S C. 2008. Review on climate characteristic of lightning activity (in Chinese). Acta Meteorol Sin, 66: 906–915

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Plan (Grant No. 2017YFC1501505) and the National Natural Science Foundation of China (Grant No. 41775006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qilin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, Q., Guo, X. et al. Simulated impacts of atmospheric gravity waves on the initiation and optical emissions of sprite halos in the mesosphere. Sci. China Earth Sci. 62, 631–642 (2019). https://doi.org/10.1007/s11430-018-9311-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9311-y

Keywords

Navigation