Skip to main content
Log in

Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and HF radiowave propagation. I. Ionospheric effects

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Geomagnetic storm ionospheric effects observed at different latitudes and longitudes on September 26 and 28–30, 2011, are interpreted with the GSM TIP model. It has been justified that the results of this model can subsequently be used to calculate the HF radiowave ray tracing under quiet conditions and for the selected dates in September 2011. The model calculations are compared with observations of the ionospheric parameters performed by different radiophysical methods. The presented results confirm the classical mechanisms by which positive and negative ionospheric storms are formed during the main phase of a geomagnetic storm. At high latitudes, the electron density is mainly disturbed due to changes in the neutral composition of the thermosphere, resulting in an increase in the chemical loss rates, and the electromagnetic drift, which results in a substantial reconstruction of the high-latitude ionosphere owing to the horizontal plasma transfer. During the storm recovery phase at midlatitudes, electron density positive disturbances are formed in the daytime due to an increase in the n(O)/n(N2) ratio; at the same time, negative effects in the electron density are formed at night as a result of plasma tube devastation. Comparison with the observations indicates that the presented model calculation results can be used to describe a medium for solving problems of radiowave propagation in the ionosphere during the storm main phase on September 26 and during the recovery phase on September 28–30, 2011.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdu, M.A., Coupling and energetics of the equatorial ionosphere–thermosphere system advances during the step period, J. Atmos. Sol.–Terr. Phys., 1999, vol. 61, no. 1–2, pp. 153–165.

    Article  Google Scholar 

  • Andreev, M.Yu., Blagoveshchensky, D.V., Vystavnoi, V.M., Mingalev, V.S., and Mingaleva, G.I., Interpretation of experimental data on HF propagation on the St. Petersburg–Spitsbergen path, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 46, pp. 502–542.

    Article  Google Scholar 

  • Balan, N., Bailey, G.J., Abdu, M.A., Oyama, K.I., Richards, P.G., MacDougall, J., and Batista, I.S. Equatorial plasma fountain and its effects over three locations: Evidence for an additional layer, the F3 layer, J. Geophys. Res., 1997, vol. 102A, pp. 2047–2056.

    Article  Google Scholar 

  • Balan, N., Batista, I.S., Abdu, M.A., MacDougall, J., and Bailey, G.J., Physical mechanism and statistics of occurrence of an additional layer in the equatorial ionosphere, J. Geophys. Res., 1998, vol. 103A, pp. 29169–29182.

    Article  Google Scholar 

  • Balan, N., Alleyne, H., Otsuka, Y., Vijaya Lekshmi, D., Fejer, B.G., and McCrea, I., Relative effects of electric field and neutral wind on positive ionospheric storms, Earth Planet. Space, 2009, vol. 61, no. 4, pp. 439–445.

    Article  Google Scholar 

  • Balan, N., Shiokawa, K., Otsuka, Y., Kikuchi, T., Vijaya Lekshmi, D., Kawamura, S., Yamamoto, M., and Bailey, G.J., A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes, J. Geophys. Res., 2010, vol. 115, p. A02304. doi 10.1029/ 2009JA014515

    Google Scholar 

  • Balan, N., Otsuka, Y., Nishioka, M., Liu, J.Y., and Bailey, G.J., Physical mechanisms of the ionospheric storms at equatorial and higher latitudes during the recovery phase of geomagnetic storms, J. Geophys. Res. Space Phys., 2013, vol. 118A. doi 10.1002/jgra.50275

  • Bessarab, F.S., Korenkov, Yu.N., Klimenko, V.V., Klimenko, M.V., and Zhang, Y., E-region ionospheric storm on May 1–3, 2010: GSM TIP model representation and suggestions for IRI improvement, Adv. Space Res., 2014.

    Google Scholar 

  • Blagoveshchensky, D.V., Andreyev, M.Yu., Mingalev, V.S., Mingaleva, G.I., and Kalishin, A.S., Physical and model interpretation of HF radio propagation on the St. Petersburg–Longyearbyen (Svalbard) path, Adv. Space Res., 2009, vol. 43. doi 10.1016/jasr.2009.01.030

  • Bryunelli, B.E. and Namgaladze, A.A., Fizika ionosfery (Physics of the Ionosphere), Moscow: Nauka, 1988.

    Google Scholar 

  • Buonsanto, M.J., Ionospheric storms: A review, Space Sci. Rev., 1999, vol. 88. doi 10.1023/A:1005107532631

  • Cheng, Z.W., Shi, J.K., Zhang, T.L., Dunlop, M., and Liu, Z.X., Relationship between FAC at plasma sheet boundary layers and AE index during storms from August to October, 2001, Sci. China Ser. E: Tech. Sci., 2008, vol. 51. doi 10.1007/s11431-008-0058-0

  • de Meneses, F.C., Klimenko, M.V., Klimenko, V.V., Alam Kherani, E., Muralikrishna, P., Xu, Jiyao., and Hasbi, A.M., Electron temperature enhancements in nighttime equatorial ionosphere under the occurrence of plasma bubbles, J. Atmos. Sol.–Terr. Phys., 2013, vol. 103. doi 10.1016/jjastp.2013.04.003

  • Feshchenko, E.Yu. and Maltsev, Yu.P., Relations of the polar cap voltage to the geophysical activity, Proc. 26 Annual Seminar “Physics of Auroral Phenomena”, Apatity, 2003, pp. 59–61.

    Google Scholar 

  • Fuller-Rowell, T., Codrescu, M., Maruyama, N., Fredrizzi, M., Araujo-Pradere, E., Sazykin, S., and Bust, G., Observed and modeled thermosphere and ionosphere response to superstorms, Radio Sci., 2007, vol. 42. doi 10.1029/2005RS003392

  • Heelis, R.A., Sojka, J.J., David, M., and Schunk, R.W., Stormtime density enhancements in the middle latitude dayside ionosphere, J. Geophys. Res., 2009, vol. 114, p. A03315. doi 10.1029/2008JA013690

    Google Scholar 

  • Heelis, R.A., Makela, J.J., and Basu, S., Reply to Tsurutani et al.’s comment on “Storming the Bastille: The effect of electric fields on the ionospheric F-layer” by Rishbeth et al. (2010), Ann. Geophys., 2013, vol. 31. doi 10.5194/angeo-31-151-2013.

  • Hernández-Pajares, M., Juan, J.M., Sanz, J., Orus, R., Garcia-Rigo, A., Feltens, J., Komjathy, A., Schaer, S.C., and Krankowski, A., the IGS VTEC maps: A reliable source of ionospheric information since 1998, J. Geod., 2009, vol. 83. doi 10.1007/s00190-008-0266-1

  • Huang, C., The traveling bifurcation of the equatorial F2 layer, Radio Sci., 1975, vol. 10, no. 5, pp. 507–516.

    Article  Google Scholar 

  • Huba, J.D., Joyce, G., and Fedder, J.A., Sami2 is another model of the ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res., 2000, vol. 105. doi 10.1029/2000JA000035

  • Karpachev, A.T., Klimenko, M.V., Klimenko, V.V., and Kuleshova, V.P., Statistical study of the F3 layer characteristics retrieved from Intercosmos-19 satellite data, J. Atmos. Sol.–Terr. Phys., 2013, vol. 103. doi 10.1016/ jjastp.2013.01.010

  • Khmyrov, G.M., Galkin, I.A., Kozlov, A.V., Reinisch, B.W., McElroy, J., and Dozois, C., Exploring digisonde ionogram data with SAO-X and DIDBase, Proc. AIP Conf., 2008, vol. 974. doi 10.1063/1.2885027

  • Kikuchi, T., Hasimoto, K.K., and Nozaki, K., Penetration of magnetospheric electric fields to the equator during a geomagnetic storm, J. Geophys. Res., 2008, vol. 113. doi 10.1029/2007JA012628

  • Klimenko, M.V. and Klimenko, V.V., Numerical simulation of the F2-layer stratification and appearance of the F3 and G Layers in the equatorial ionosphere: The morphology of the phenomena, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, pp. 646–655.

    Article  Google Scholar 

  • Klimenko, M.V. and Klimenko, V.V., Mechanisms of stratification of the F2 layer and formation of the F3 and G layers in the equatorial ionosphere, Geomagn. Aeron. (Engl. Transl.), 2012a, vol. 52, pp. 321–334.

    Article  Google Scholar 

  • Klimenko, M.V. and Klimenko, V.V., Disturbance dynamo, prompt penetration electric field and overshielding in the Earth’s ionosphere during geomagnetic storm, J. Atmos. Sol.–Terr. Phys., 2012b, pp. 90–91. doi 10.1016/ jjastp.2012.02.018

    Google Scholar 

  • Klimenko, V.V., Klimenko, M.V., and Bryukhanov, V.V., Numerical simulation of the electric field and zonal current in the Earth’s ionosphere: Problem statement and test calculations, Math. Models Comput. Simul., 2006a, vol. 18, pp. 77–92.

    Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., and Bryukhanov, V.V., Numerical simulation of the electric field and zonal current in the Earth’s ionosphere: The dynamo field and equatorial electrojet, Geomagn. Aeron. (Engl. Transl.), 2006b, vol. 46, pp. 485–494.

    Article  Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., and Bryukhanov, V.V., Numerical modeling of the equatorial electrojet UT-variation on the basis of the model GSM TIP, Adv. Radio Sci., 2007, vol. 5, pp. 385–392.

    Article  Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., and Goncharenko, L.P., Ionospheric effects of geomagnetic storms at midlatitudes, Russ. J. Phys. Chem. B, 2011a, vol. 30, no. 5, pp. 24–34.

    Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., and Goncharenko, L.P., Ionospheric effects caused by the series of geomagnetic storms of September 9–14, 2005, Geomagn. Aeron. (Engl. Transl.), 2011b, vol. 51, no. 3, pp. 368–380.

    Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., and Goncharenko, L.P., Disturbances in the ionospheric F-region peak heights in the American longitudinal sector during geomagnetic storms of September 2005, Adv. Space Res., 2011c, vol. 48. doi 10.1016/jasr.2011.06.002

  • Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., Goncharenko, L.P., Sahai, Y., Fagundes, P.R., de Jesus, R., de Abreu, A.J., and Vesnin, A.M., Numerical modeling of ionospheric effects in the middleand low-latitude F region during geomagnetic storm sequence of 9–14 September 2005, Radio Sci., 2011d, vol. 46. doi 10.1029/2010RS004590

  • Klimenko, M.V., Klimenko, V.V., and Karpachev, A.T., Formation mechanism of additional layers above regular F2 layer in the near-equatorial ionosphere during quiet period, J. Atmos. Sol.–Terr. Phys., 2012a, pp. 90–91. doi 10.1016/jjastp.2012.02.011

    Google Scholar 

  • Klimenko, M.V., Klimenko, V.V., Ratovsky, K.G., and Goncharenko, L.P., Numerical modeling of the global ionospheric effects of storm sequence on September 9–14, 2005: Comparison with IRI model, Earth Planet. Space, 2012b, vol. 64, no. 6, pp. 433–440.

    Article  Google Scholar 

  • Klimenko, M.V., Zhao, B., Karpachev, A.T., and Klimenko, V.V., Stratification of the low-latitude and near-equatorial F2 layer, topside ionization ledge, and F3 layer: What we know about this? A review, Int. J. Geophys., 2012c, p. 938057.

    Google Scholar 

  • Kotova, D.S., Klimenko, M.V., Klimenko, V.V., and Zakharov, V.E., Numerical simulation of the effect of the geomagnetic storm that occurred on May 2–3, 2010, on the HF propagation in the ionosphere, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2014, vol. 57, no. 7, pp. 519–530.

    Google Scholar 

  • Kotovich, G.V., Grozov, V.P., Kim, A.G., Oinats, A.V., Romanova, E.B., and Tashchilin, A.V., Application of the theoretical reference ionosphere model for calculating HF-radiowave propagation characteristics, Geomagn. Aeron. (Engl. Transl.), 2010, vol. 50, pp. 530–534.

    Google Scholar 

  • Krinberg, I.A. and Tashchilin, A.V., Ionosfera i plazmosfera (The Ionosphere and Plasmasphere), Moscow: Nauka, 1984.

    Google Scholar 

  • Lei, J., Wang, W., Burns, A.G., Solomon, S.C., Richmond, A.D., Wiltberger, M., Goncharenko, L.P., Coster, A., and Reinisch, B.W., Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase, J. Geophys. Res., 2008, vol. 113. doi 10.1029/ 2007JA012807

  • Lu, G., Goncharenko, L.P., Richmond, A.D., Roble, R.G., and Aponte, N., A dayside ionospheric positive storm phase driven by neutral winds, J. Geophys. Res., 2008, vol. 113, p. A08304. doi 10.1029/2007JA012895

    Google Scholar 

  • Mannucci, A.J., Tsurutani, B.T., Iijima, B.A., Komjathy, A., Saito, A., Gonzalez, W.D., Guarnieri, F.L., Kozyra, J.U., and Skoug, R., Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms”, Geophys. Res. Lett., 2005, vol. 32, p. L12S02.

  • Mayr, H.G. and Trinks, H., Spherical asymmetry in thermospheric magnetic storms, Planet. Space Sci., 1977, pp. 607–613.

    Google Scholar 

  • Mayr, H.G. and Volland, H., Magnetic storm effects in the neutral composition, Planet. Space Sci., 1972, vol. 20, pp. 379–393.

    Article  Google Scholar 

  • Mayr, H.G. and Volland, H., Magnetic storm characteristics of the thermosphere, J. Geophys. Res., 1973, vol. 78, no. 13, pp. 2251–2264.

    Article  Google Scholar 

  • Mayr, H.G., Harris, I., and Spencer, N.W., Some properties of upper atmosphere dynamics, Rev. Geophys., 1978, vol. 16. doi 10.1029/RG016i004p00539

  • Mendillo, M., Storms in the ionosphere: Patterns and processes for total electron content, Rev. Geophys., 2006, p. RG4001. doi 10.1029/2005RG

    Google Scholar 

  • Mingalev, V.S. and Mingaleva, G.I., Trekhmernaya matematicheskaya model’ polyarnoi i subavroral’noi ionosfery, in Modelirovanie protsessov v verkhnei polyarnoi atmosfere (Modeling processes in the polar upper atmosphere), Ivanov, V.E., Sakharov, Ya.A., and Golubtsova, N.V., Eds., Murmansk: PGI KNTs RAN, 1998, pp. 251–265.

  • Namgaladze, A.A., Förster, M., and Yurik, R.Y., Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model, Ann. Geophys., 2000, vol. 18. doi 10.1007/s00585-000-0461-8

  • Namgaladze, A.A., Zubova, Yu.V., Namgaladze, A.N., et al., Modelling of the ionosphere/thermosphere behaviour during the April 2002 magnetic storms: A comparison of the UAM results with the ISR and NRLMSISE-00 data, Adv. Space Res., 2006, vol. 37. doi 10.1016/jasr.2005.04.013

  • Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushenko, T.A., and Naumova, N.M., Global model of the thermosphere–ionosphere–protonosphere system, Pure Appl. Geophys., 1988, vol. 127, no. 2/3, pp. 219–254.

    Article  Google Scholar 

  • Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushchenko, T.A., and Naumova, N.M., Global numerical model of the Earth’s thermosphere, ionosphere, and protonosphere, Geomagn. Aeron., 1990, vol. 30, no. 4, pp. 612–619.

    Google Scholar 

  • Pavlov, A.V. and Pavlova, N.M., Effect of zonal E × Bplasma drift on electron density in the low-latitude ionospheric F-region at a solar activity maximum near vernal equinox, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, pp. 621–635.

    Article  Google Scholar 

  • Pavlov, A.V. and Pavlova, N.M., Comparison of modeled electron densities and electron and ion temperatures with Arecibo observations during undisturbed and geomagnetic storm periods of 7–11 September 2005, J. Geophys. Res., 2011, vol. 116, p. A03301. doi 10.1029/ 2010JA016067

  • Pawlowski, D.J., Ridley, A.J., Kim, I., and Bernstein, D.S., Global model comparison with Millstone Hill during September 2005, J. Geophys. Res., 2008, vol. 113, p. A01312. doi 10.1029/2010JA012390

    Google Scholar 

  • Pirog, O.M., Polekh, N.M., Tashchilin, A.V., Romanova, E.B., and Zherebtsov, G.A., Response of ionosphere to the great geomagnetic storm of September 1998: Observation and modeling, Adv. Space Res., 2006, vol. 37. doi 10.1016/jasr.2006.02.005

  • Prolss, G.W., Ionospheric F-region storms, in Handbook of Atmospheric Electrodynamics, Volland, H., Ed., Boca Raton: CRC Press, 1995, vol. 2, pp. 195–248.

    Google Scholar 

  • Prolss, G.W., Ionospheric storms at mid-latitude: A short review, Geophys. Monogr. Am. Geophys. Union, 2013, vol. 181. doi 10.1029/181GM03

  • Reinisch, B.W., Haines, D.M., Bibl, K., Galkin, I., Huang, X., Kitrosser, D.F., Sales, G.S., and Scali, J.L., Ionospheric sounding support of OTH radar, Radio Sci., 1997, vol. 32, no. 4, pp. 1681–1694.

    Article  Google Scholar 

  • Reinisch, B.W., Galkin, I.A., Khmyrov, G., Kozlov, A., and Kitrosser, D.F., Automated collection and dissemination of ionospheric data from the digisonde network, Adv. Radio Sci., 2004, vol. 2, pp. 241–247.

    Google Scholar 

  • Rishbeth and Garriott, Introduction to Ionospheric Physics, San Diego: Academic, 1969.

  • Rishbeth, H., Heelis, R.A., Makela, J.J., and Basu, S., Storming the Bastille: The effect of electric fields on the ionospheric F-layer, Ann. Geophys., 2010, vol. 28, pp. 977–981. doi 10.5194/angeo-28-977-2010

    Article  Google Scholar 

  • Schunk, R.W. and Nagy, A.F., Ionospheres: Physics, plasma physics, and chemistry, Cambridge: Cambridge Univ. Press, 2000.

    Book  Google Scholar 

  • Schunk, R.W. and Sojka, J.J., Ionosphere–thermosphere space weather issues, J. Atmos. Terr. Phys., 1996, vol. 58, no. 14, pp. 1527–1574.

    Article  Google Scholar 

  • Snekvik, K., Haaland, S., Østgaard, N., et al., Cluster observations of a field aligned current at the dawn flank of a bursty bulk flow, Ann. Geophys., 2007, vol. 25, pp. 1405–1415.

    Article  Google Scholar 

  • Sojka, J.J., Schunk, R.W., and Denig, W.F., Ionospheric response to the sustained high geomagnetic activity during the March’89 great storm, J. Geophys. Res., 1994, vol. 99A, pp. 21 341–352.

    Google Scholar 

  • Surotkin, V.A., Namgaladze, A.A., and Kolomiitsev, O.P., Modeling the diurnal development of the stratification of the equatorial ionospheric F2 region, Geomagn. Aeron., 1985, vol. 25, no. 3, pp. 394–399.

    Google Scholar 

  • Suvorova, A.V., Dmitriev, A.V., Tsai, L.-C., Kunitsyn, V.E., Andreeva, E.S., Nesterov, I.A., and Lazutin, L.L., TEC evidence for near-equatorial energy deposition by 30 keV electrons in the topside ionosphere, J. Geophys. Res. Space Phys., 2013, vol. 118. doi 10.1002/ jgra.50439

  • Tsurutani, B.T., Mannuccci, A.J., Verkhoglyadova, O.P., and Lakhina, G.S., Comment on “Storming the Bastille: The effect of electric fields on the ionospheric F-layer” by Rishbeth et al. (2010), Ann. Geophys., 2013, vol. 31. doi 10.5194/angeo-31-145-2013

  • Vorobjev, V.G. and Yagodkina, O.I., Empirical model of auroral precipitation power during substorms, J. Atmos. Sol.–Terr. Phys., 2008, vol. 70, pp. 654–662.

    Article  Google Scholar 

  • Zhao, B., Wan, W., Reinisch, B., Yue, X., Le, H., Liu, J., and Xiong, B., Features of the F3 layer in the low-latitude ionosphere at sunset, J. Geophys. Res., 2011, vol. 116, p. A01313. doi 10.1029/2010JA016111

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Klimenko.

Additional information

Original Russian Text © M.V. Klimenko, V.V. Klimenko, F.S. Bessarab, K.G. Ratovsky, I.E. Zakharenkova, I.A. Nosikov, A.E. Stepanov, D.S. Kotova, V.G. Vorobjev, O.I. Yagodkina, 2015, published in Geomagnetizm i Aeronomiya, 2015, Vol. 55, No. 6, pp. 769–789.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, M.V., Klimenko, V.V., Bessarab, F.S. et al. Influence of geomagnetic storms of September 26–30, 2011, on the ionosphere and HF radiowave propagation. I. Ionospheric effects. Geomagn. Aeron. 55, 744–762 (2015). https://doi.org/10.1134/S0016793215050072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793215050072

Keywords

Navigation