Skip to main content
Log in

Evaluation of the SMOS and SMAP soil moisture products under different vegetation types against two sparse in situ networks over arid mountainous watersheds, Northwest China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Assessment of the suitability of satellite soil moisture products at large scales is urgently needed for numerous climatic and hydrological researches, particularly in arid mountainous watersheds where soil moisture plays a key role in land-atmosphere exchanges. This study presents evaluation of the SMOS (L2) and SMAP (L2_P_E and L2_P) products against ground-based observations from the Upstream of the Heihe River Watershed in situ Soil Moisture Network (UHRWSMN) and the Ecological and Hydrological Wireless Sensor Network (EHWSN) over arid high mountainous watersheds, Northwest China. Results show that all the three products are reliable in catching the temporal trend of the in situ observations at both point and watershed scales in the study area. Due to the uncertainty in brightness temperature and the underestimation of effective temperature, the SMOS L2 product and both the SMAP L2 products show “dry bias” in the high, cold mountainous area. Because of the more accurate brightness temperature observations viewing at a constant angle and more suitable estimations of single scattering albedo and optical depth, both the SMAP L2 products performed significantly better than the SMOS product. Moreover, comparing with station density of in situ network, station representation is much more important in the evaluation of the satellite soil moisture products. Based on our analysis, we propose the following suggestions for improvement of the SMOS and SMAP product suitability in the mountainous areas: further optimization of effective temperature; revision of the retrieval algorithm of the SMOS mission to reduce the topographic impacts; and, careful selection of in situ observation stations for better representation of in situ network in future evaluations. All these improvements would lead to better applicability of the SMOS and SMAP products for soil moisture estimation to the high elevation and topographically complex mountainous areas in arid regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Bitar A, Leroux D, Kerr Y H, Merlin O, Richaume P, Sahoo A, Wood E F. 2012. Evaluation of SMOS soil moisture products over continental U.S. using the SCAN/SNOTEL network. IEEE Trans Geosci Remote Sens, 50: 1572–1586

    Article  Google Scholar 

  • Al-Yaari A, Wigneron J P, Ducharne A, Kerr Y, de Rosnay P, de Jeu R, Govind A, Al Bitar A, Albergel C, Muñoz-Sabater J, Richaume P, Mialon A. 2014. Global-scale evaluation of two satellite-based passive microwave soil moisture datasets (SMOS and AMSR-E) with respect to land data assimilation system estimates. Remote Sens Environ, 149: 181–195

    Article  Google Scholar 

  • Al-Yaari A, Wigneron J P, Kerr Y, Rodriguez-Fernandez N, O'Neill P E, Jackson T J, De Lannoy G J M, Al Bitar A, Mialon A, Richaume P, Walker J P, Mahmoodi A, Yueh S. 2017. Evaluating soil moisture retrievals from ESA’s SMOS and NASA’s SMAP brightness temperature datasets. Remote Sens Environ, 193: 257–273

    Article  Google Scholar 

  • Brooks P D, Chorover J, Fan Y, Godsey S E, Maxwell R M, McNamara J P, Tague C. 2015. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resour Res, 51: 6973–6987

    Article  Google Scholar 

  • Brown M E, Escobar V, Moran S, Entekhabi D, O’Neill P E, Njoku E G, Doorn B, Entin J K. 2013. NASA’s soil moisture active passive (SMAP) mission and opportunities for applications users. Bull Amer Meteorol Soc, 94: 1125–1128

    Article  Google Scholar 

  • Chan S K, Bindlish R, O’Neill P, Njoku E, Jackson T, Colliander A, Chen F, Burgin M, Dunbar S, Piepmeier J, Yueh S, Entekhabi D, Cosh M H, Caldwell T, Walker J, Wu X, Berg A, Rowlandson T, Pacheco A, McNairn H, Thibeault M, Martinez-Fernandez J, Gonzalez-Zamora A, Seyfried M, Bosch D, Starks P, Goodrich D, Prueger J, Palecki M, Small E E, Zreda M, Calvet J C, Crow W T, Kerr Y. 2016. Assessment of the SMAP passive soil moisture product. IEEE Trans Geosci Remote Sens, 54: 4994–5007

    Article  Google Scholar 

  • Chen F, Crow W T, Colliander A, Cosh M H, Jackson T J, Bindlish R, Reichle R H, Chan S K, Bosch D D, Starks P J, Goodrich D C, Seyfried M S. 2017. Application of triple collocation in ground-based validation of soil moisture active/passive (SMAP) Level 2 data products. IEEE J Sel Top Appl Earth Observations Remote Sens, 10: 489–502

    Article  Google Scholar 

  • Colliander A, Cosh M H, Misra S, Jackson T J, Crow W T, Chan S, Bindlish R, Chae C, Holifield Collins C, Yueh S H. 2017b. Validation and scaling of soil moisture in a semi-arid environment: SMAP validation experiment 2015 (SMAPVEX15). Remote Sens Environ, 196: 101–112

    Article  Google Scholar 

  • Colliander A, Jackson T J, Bindlish R, Chan S, Das N, Kim S B, Cosh M H, Dunbar R S, Dang L, Pashaian L, Asanuma J, Aida K, Berg A, Rowlandson T, Bosch D, Caldwell T, Caylor K, Goodrich D, al Jassar H, Lopez-Baeza E, Martínez-Fernández J, González-Zamora A, Livingston S, McNairn H, Pacheco A, Moghaddam M, Montzka C, Notarnicola C, Niedrist G, Pellarin T, Prueger J, Pulliainen J, Rautiainen K, Ramos J, Seyfried M, Starks P, Su Z, Zeng Y, van der Velde R, Thibeault M, Dorigo W, Vreugdenhil M, Walker J P, Wu X, Monerris A, O'Neill P E, Entekhabi D, Njoku E G, Yueh S. 2017a. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens Environ, 191: 215–231

    Article  Google Scholar 

  • Cui H, Jiang L, Du J, Zhao S, Wang G, Lu Z, Wang J. 2017. Evaluation and analysis of AMSR-2, SMOS, and SMAP soil moisture products in the Genhe area of China. J Geophys Res-Atmos, 122: 8650–8666

    Article  Google Scholar 

  • Das N N, Entekhabi D, Dunbar R S, Njoku E G, Yueh S H. 2016. Uncertainty estimates in the SMAP combined active-passive downscaled brightness temperature. IEEE Trans Geosci Remote Sens, 54: 640–650

    Article  Google Scholar 

  • De Lannoy G J M, Reichle R H, Peng J, Kerr Y, Castro R, Kim E J, Qing Liu E J. 2015. Converting between SMOS and SMAP level-1 brightness temperature observations over nonfrozen land. IEEE Geosci Remote Sens Lett, 12: 1908–1912

    Article  Google Scholar 

  • Dente L, Su Z, Wen J. 2012. Validation of SMOS soil moisture products over the Maqu and Twente regions. Sensors, 12: 9965–9986

    Article  Google Scholar 

  • Ding Y, Baisheng Y E, Zhou W, 1999. Temporal and spatial precipitation distribution in the Heihe Catchment, Northwest China, during the past 40 a (in Chinese). J Glaciol Geocryol, 21: 42–48

    Google Scholar 

  • Djamai N, Magagi R, Goïta K, Hosseini M, Cosh M H, Berg A, Toth B. 2015. Evaluation of SMOS soil moisture products over the CanEx-SM10 area. J Hydrol, 520: 254–267

    Article  Google Scholar 

  • Entekhabi D, Njoku E G, O'Neill P E, Kellogg K H, Crow W T, Edelstein W N, Entin J K, Goodman S D, Jackson T J, Johnson J, Kimball J, Piepmeier J R, Koster R D, Martin N, McDonald K C, Moghaddam M, Moran S, Reichle R, Shi J C, Spencer M W, Thurman S W, Tsang L, Van Zyl J. 2010. The soil moisture active passive (SMAP) mission. Proc IEEE, 98: 704–716

    Article  Google Scholar 

  • Entekhabi D, Yueh S, O’Neill P E, Kellogg K H, Allen A, Bindlish R, Brown M, Chan S, Colliander A, Crow W T, Das N, De Lannoy G, Dunbar R S, Edelstein W N, Entin J K, Escobar V, Goodman S D, Jackson T J, Jai B, Johnson J. 2014. SMAP Handbook. The National Aeronautics and Space Administration

    Google Scholar 

  • Fernandez-Moran R, Wigneron J P, De Lannoy G, Lopez-Baeza E, Parrens M, Mialon A, Mahmoodi A, Al-Yaari A, Bircher S, Al Bitar A, Richaume P, Kerr Y. 2017. A new calibration of the effective scattering albedo and soil roughness parameters in the SMOS SM retrieval algorithm. Int J Appl Earth Observation Geoinf, 62: 27–38

    Article  Google Scholar 

  • Frye J D, Mote T L. 2010a. Convection initiation along soil moisture boundaries in the southern Great Plains. Mon Weather Rev, 138: 1140–1151

    Article  Google Scholar 

  • Frye J D, Mote T L. 2010b. The synergistic relationship between soil moisture and the low-level jet and its role on the prestorm environment in the southern Great Plains. J Appl Meteor Climatol, 49: 775–791

    Article  Google Scholar 

  • Galantowicz J F, Entekhabi D, Njoku E G. 2000. Estimation of soil-type heterogeneity effects in the retrieval of soil moisture from radiobrightness. IEEE Trans Geosci Remote Sens, 38: 312–315

    Article  Google Scholar 

  • Gao B, Qin Y, Wang Y, Yang D, Zheng Y. 2016. Modeling ecohydrological processes and spatial patterns in the Upper Heihe Basin in China. Forests, 7: 10

    Article  Google Scholar 

  • Gherboudj I, Magagi R, Goita K, Berg A A, Toth B, Walker A. 2012. Validation of SMOS data over agricultural and boreal forest areas in Canada. IEEE Trans Geosci Remote Sens, 50: 1623–1635

    Article  Google Scholar 

  • González-Zamora Á, Sánchez N, Martínez-Fernández J, Gumuzzio Á, Piles M, Olmedo E. 2015. Long-term SMOS soil moisture products: A comprehensive evaluation across scales and methods in the Duero Basin (Spain). Phys Chem Earth Parts A/B/C, 83-84: 123–136

    Google Scholar 

  • Han X, Franssen H J H, Montzka C, Vereecken H. 2014. Soil moisture and soil properties estimation in the community land model with synthetic brightness temperature observations. Water Resour Res, 50: 6081–6105

    Article  Google Scholar 

  • Jackson T J, Bindlish R, Cosh M H, Zhao T, Starks P J, Bosch D D, Seyfried M, Moran M S, Goodrich D C, Kerr Y H, Leroux D. 2012. Validation of soil moisture and ocean salinity (SMOS) soil moisture over watershed networks in the U.S.. IEEE Trans Geosci Remote Sens, 50: 1530–1543

    Article  Google Scholar 

  • Jin M, Zheng X, Jiang T, Li X, Li X J, Zhao K. 2017. Evaluation and improvement of SMOS and SMAP soil moisture products for soils with high organic matter over a forested area in Northeast China. Remote Sens, 9: 387

    Article  Google Scholar 

  • Kang J, Jin R, Li X, Ma C, Qin J, Zhang Y. 2017. High spatio-temporal resolution mapping of soil moisture by integrating wireless sensor network observations and MODIS apparent thermal inertia in the Babao River Basin, China. Remote Sens Environ, 191: 232–245

    Article  Google Scholar 

  • Kerr Y H, Waldteufel P, Wigneron J P, Martinuzzi J, Font J, Berger M. 2001. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans Geosci Remote Sens, 39: 1729–1735

    Article  Google Scholar 

  • Kerr Y H, Font J, Martin-Neira M, Mecklenburg S. 2012a. Introduction to the special issue on the ESA’s soil moisture and ocean salinity mission (SMOS)—Instrument performance and first results. IEEE Trans Geosci Remote Sens, 50: 1351–1353

    Article  Google Scholar 

  • Kerr Y H, Al-Yaari A, Rodriguez-Fernandez N, Parrens M, Molero B, Leroux D, Bircher S, Mahmoodi A, Mialon A, Richaume P, Delwart S, Al Bitar A, Pellarin T, Bindlish R, Jackson T J, Rüdiger C, Waldteufel P, Mecklenburg S, Wigneron J P. 2016. Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation. Remote Sens Environ, 180: 40–63

    Article  Google Scholar 

  • Kerr Y H, Waldteufel P, Richaume P, Wigneron J P, Ferrazzoli P, Mahmoodi A, Al Bitar A, Cabot F, Gruhier C, Juglea S E, Leroux D, Mialon A, Delwart S. 2012b. The SMOS soil moisture retrieval algorithm. IEEE Trans Geosci Remote Sens, 50: 1384–1403

    Article  Google Scholar 

  • Konings A G, Piles M, Rötzer K, McColl K A, Chan S K, Entekhabi D. 2016. Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations. Remote Sens Environ, 172: 178–189

    Article  Google Scholar 

  • Koster R D, Dirmeyer P A, Guo Z, Bonan G, Chan E, Cox P, Gordon C T, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu C H, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud Y C, Taylor C M, Verseghy D, Vasic R, Xue Y, Yamada T, Yamada T. 2004. Regions of strong coupling between soil moisture and precipitation. Science, 305: 1138–1140

    Article  Google Scholar 

  • Koster R D, Mahanama S P P, Yamada T J, Balsamo G, Berg A A, Boisserie M, Dirmeyer P A, Doblas-Reyes F J, Drewitt G, Gordon C T, Guo Z, Jeong J H, Lawrence D M, Lee W S, Li Z, Luo L, Malyshev S, Merryfield W J, Seneviratne S I, Stanelle T, van den Hurk B J J M, Vitart F, Wood E F. 2010. Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys Res Lett, 37: L02402

    Article  Google Scholar 

  • Lei F, Huang C, Shen H, Li X. 2014. Improving the estimation of hydrological states in the SWAT model via the ensemble Kalman smoother: Synthetic experiments for the Heihe River Basin in northwest China. Adv Water Resources, 67: 32–45

    Google Scholar 

  • Leroux D J, Kerr Y H, Richaume P, Fieuzal R. 2013. Spatial distribution and possible sources of SMOS errors at the global scale. Remote Sens Environ, 133: 240–250

    Article  Google Scholar 

  • Li C, Lu H, Yang K, Han M, Wright J, Chen Y, Yu L, Xu S, Huang X, Gong W. 2018. The evaluation of SMAP enhanced soil moisture products using high-resolution model simulations and in-situ observations on the Tibetan Plateau. Remote Sens, 10: 535

    Article  Google Scholar 

  • Li D, Jin R, Zhou J, Kang J. 2015. Analysis and reduction of the uncertainties in soil moisture estimation with the L-MEB model using EFAST and ensemble retrieval. IEEE Geosci Remote Sens Lett, 12: 1337–1341

    Article  Google Scholar 

  • Li X, Cheng G, Liu S, Xiao Q, Ma M, Jin R, Che T, Liu Q, Wang W, Qi Y, Wen J, Li H, Zhu G, Guo J, Ran Y, Wang S, Zhu Z, Zhou J, Hu X, Xu Z. 2013. Heihe watershed allied telemetry experimental research (Hi-WATER): Scientific objectives and experimental design. Bull Amer Meteorol Soc, 94: 1145–1160

    Article  Google Scholar 

  • Li Z, Xu Z, Shao Q, Yang J. 2009. Parameter estimation and uncertainty analysis of SWAT model in upper reaches of the Heihe river basin. Hydrol Process, 23: 2744–2753

    Article  Google Scholar 

  • Ma C, Li X, Wei L, Wang W. 2017. Multi-scale validation of SMAP soil moisture products over cold and arid regions in Northwestern China using distributed ground observation data. Remote Sens, 9: 327–341

    Article  Google Scholar 

  • Ma L, Zhang T, Frauenfeld O W, Qin D. 2006. Verification of ERA-40 and NCEP-1 Reanalysis Temperature Data with Ground-based Measurements in China. American Geophysical Union

    Google Scholar 

  • Mo T, Choudhury B J, Schmugge T J, Wang J R, Jackson T J. 1982. A model for microwave emission from vegetation-covered fields. J Geophys Res, 87: 11229

    Google Scholar 

  • O’Neill P, Chan S, Njoku E, Jackson T, Bindlish R. 2015. SMAP Level 2 & 3 Soil Moisture (Passive) Algorithm Theoretical Basis Document. Jet Propulsion Laboratory, Pasadena, CA, USA

    Google Scholar 

  • Revision B Oliva R, Daganzo E, Kerr Y H, Mecklenburg S, Nieto S, Richaume P, Gruhier C. 2012. SMOS radio frequency interference scenario: Status and actions taken to improve the RFI environment in the 1400–1427-MHz passive band. IEEE Trans Geosci Remote Sens, 50: 1427–1439

    Article  Google Scholar 

  • O′Neill P, Chan S, Colliander A, Dunbar S, Njoku E, Bindlish R, Chen F, Jackson T, Burgin M, Piepmeier J, Yueh S, Entekhabi D, Cosh M, Caldwell T, Walker J, Wu X, Berg A, Rowlandson T, Pacheco A, McNairn H, Thibeault M, Martínez-Fernández J, González-Zamora Á, Seyfried M, Bosch D, Starks P, Goodrich D, Prueger J, Palecki M, Small E, Zreda M, Calvet J C, Crow W, Kerr Y. 2016. Evaluation of the validated Soil Moisture product from the SMAP radiometer. IGARSS 2016–2016 IEEE International Geoscience and Remote Sensing Symposium IEEE. 125–128

    Chapter  Google Scholar 

  • Owe M, de Jeu R, Walker J. 2001. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans Geosci Remote Sens, 39: 1643–1654

    Article  Google Scholar 

  • Pan M, Cai X, Chaney N W, Entekhabi D, Wood E F. 2016. An initial assessment of SMAP soil moisture retrievals using high-resolution model simulations and in situ observations. Geophys Res Lett, 43: 9662–9668

    Article  Google Scholar 

  • Panciera R, Walker J P, Kalma J D, Kim E J, Saleh K, Wigneron J P. 2009. Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval algorithm. Remote Sens Environ, 113: 435–444

    Article  Google Scholar 

  • Parrens M, Zakharova E, Lafont S, Calvet J C, Kerr Y, Wagner W, Wigneron J P. 2012. Comparing soil moisture retrievals from SMOS and ASCAT over France. Hydrol Earth Syst Sci, 16: 423–440

    Article  Google Scholar 

  • Pellarin T, Mialon A, Biron R, Coulaud C, Gibon F, Kerr Y, Lafaysse M, Mercier B, Morin S, Redor I, Schwank M, Völksch I. 2016. Three years of L-band brightness temperature measurements in a mountainous area: Topography, vegetation and snowmelt issues. Remote Sens Environ, 180: 85–98

    Article  Google Scholar 

  • Polcher J, Piles M, Gelati E, Barella-Ortiz A, Tello M. 2016. Comparing surface-soil moisture from the SMOS mission and the ORCHIDEE land-surface model over the Iberian Peninsula. Remote Sens Environ, 174: 69–81

    Article  Google Scholar 

  • Reichle R, Koster R, De Lannoy G, Crow W, Kimball J. 2014. Algorithm Theoretical Basis Document Level 4 Surface and Root Zone Soil Moisture (L4_SM) Data Product. NASA. 3

    Google Scholar 

  • Richter D B, Mobley M L. 2009. Monitoring Earth’s Critical Zone. Science, 326: 1067–1068

    Google Scholar 

  • Ridler M E, Madsen H, Stisen S, Bircher S, Fensholt R. 2014. Assimilation of SMOS-derived soil moisture in a fully integrated hydrological and soil-vegetation-atmosphere transfer model in Western Denmark. Water Resour Res, 50: 8962–8981

    Article  Google Scholar 

  • Rötzer K, Montzka C, Bogena H, Wagner W, Kerr Y H, Kidd R, Vereecken H. 2014. Catchment scale validation of SMOS and ASCAT soil moisture products using hydrological modeling and temporal stability analysis. J Hydrol, 519: 934–946

    Article  Google Scholar 

  • Srivastava P K, Han D, Rico Ramirez M A, Islam T. 2013. Appraisal of SMOS soil moisture at a catchment scale in a temperate maritime climate. J Hydrol, 498: 292–304

    Article  Google Scholar 

  • Taylor C M. 2015. Detecting soil moisture impacts on convective initiation in Europe. Geophys Res Lett, 42: 4631–4638

    Article  Google Scholar 

  • Vereecken H, Huisman J A, Pachepsky Y, Montzka C, van der Kruk J, Bogena H, Weihermüller L, Herbst M, Martinez G, Vanderborght J. 2014. On the spatio-temporal dynamics of soil moisture at the field scale. J Hydrol, 516: 76–96

    Article  Google Scholar 

  • Vreugdenhil M, Dorigo W, Broer M, Haas P, Eder A, Hogan P, Bloeschl G, Wagner W, 2013. Towards a high-density soil moisture network for the validation of SMAP in Petzenkirchen, Austria. IGARSS 2013–2013 IEEE International Geoscience and Remote Sensing Symposium IEEE. 1865–1868, doi: 10.1109/IGARSS.2013.6723166

    Google Scholar 

  • Wang C, Zhao C Y. 2013. A study of the spatio-temporal distribution of precipitation in upper reaches of Heihe River of China using TRMM data (in Chinese). J Nat Resour, 28: 862–872

    Google Scholar 

  • Wigneron J P, Kerr Y, Waldteufel P, Saleh K, Escorihuela M J, Richaume P, Ferrazzoli P, de Rosnay P, Gurney R, Calvet J C, Grant J P, Guglielmetti M, Hornbuckle B, Mätzler C, Pellarin T, Schwank M. 2007. L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields. Remote Sens Environ, 107: 639–655

    Article  Google Scholar 

  • Wigneron J P, Schwank M, Baeza E L, Kerr Y, Novello N, Millan C, Moisy C, Richaume P, Mialon A, Al Bitar A, Cabot F, Lawrence H, Guyon D, Calvet J C, Grant J P, Casal T, de Rosnay P, Saleh K, Mahmoodi A, Delwart S, Mecklenburg S. 2012. First evaluation of the simultaneous SMOS and ELBARA-II observations in the Mediterranean region. Remote Sens Environ, 124: 26–37

    Article  Google Scholar 

  • Wu Q, Liu H, Wang L, Deng C. 2016. Evaluation of AMSR2 soil moisture products over the contiguous United States using in situ data from the international soil moisture network. Int J Appl Earth Observation Geoinf, 45: 187–199

    Article  Google Scholar 

  • Yang L, Sun G, Zhi L, Zhao J. 2018. Negative soil moisture-precipitation feedback in dry and wet regions. Sci Rep, 8: 4026

    Article  Google Scholar 

  • Zhang L, He C, Li J, Wang Y, Wang Z. 2017b. Comparison of IDW and physically based IDEW method in hydrological modelling for a large mountainous watershed, Northwest China. River Res Applic, 33: 912–924

    Article  Google Scholar 

  • Zhang L, He C, Zhang M. 2017a. Multi-scale evaluation of the SMAP product using sparse in-situ network over a high mountainous watershed, Northwest China. Remote Sens, 9: 1111–1132

    Article  Google Scholar 

  • Zhao L, Yang K, Qin J, Chen Y, Tang W, Lu H, Yang Z L. 2014. The scaledependence of SMOS soil moisture accuracy and its improvement through land data assimilation in the central Tibetan Plateau. Remote Sens Environ, 152: 345–355

    Article  Google Scholar 

  • Zhao T, Shi J, Bindlish R, Jackson T, Cosh M, Jiang L, Zhang Z, Lan H. 2015. Parametric exponentially correlated surface emission model for L-band passive microwave soil moisture retrieval. Phys Chem Earth Parts A/B/C, 83-84: 65–74

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41501016, 41530752, and 91125010), the Scherer Endowment Fund of Department of Geography, Western Michigan University and the Fundamental Research Funds for the Central Universities (Grant No. LZUJBKY-2017-224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chansheng He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., He, C., Zhang, M. et al. Evaluation of the SMOS and SMAP soil moisture products under different vegetation types against two sparse in situ networks over arid mountainous watersheds, Northwest China. Sci. China Earth Sci. 62, 703–718 (2019). https://doi.org/10.1007/s11430-018-9308-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-018-9308-9

Keywords

Navigation