Skip to main content
Log in

Formation time of the big mantle wedge beneath eastern China and a new lithospheric thinning mechanism of the North China craton—Geodynamic effects of deep recycled carbon

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

High-resolution P wave tomography shows that the subducting Pacific slab is stagnant in the mantle transition zone and forms a big mantle wedge beneath eastern China. The Mg isotopic investigation of large numbers of mantle-derived volcanic rocks from eastern China has revealed that carbonates carried by the subducted slab have been recycled into the upper mantle and formed carbonated peridotite overlying the mantle transition zone, which becomes the sources of various basalts. These basalts display light Mg isotopic compositions (δ26Mg =–0.60‰ to –0.30‰) and relatively low 87Sr/86Sr ratios (0.70314–0.70564) with ages ranging from 106 Ma to Quaternary, suggesting that their mantle source had been hybridized by recycled magnesite with minor dolomite and their initial melting occurred at 300−360 km in depth. Therefore, the carbonate metasomatism of their mantle source should have occurred at the depth larger than 360 km, which means that the subducted slab should be stagnant in the mantle transition zone forming the big mantle wedge before 106 Ma. This timing supports the rollback model of subducting slab to form the big mantle wedge. Based on high P-T experiment results, when carbonated silicate melts produced by partial melting of carbonated peridotite was raising and reached the bottom (180–120 km in depth) of cratonic lithosphere in North China, the carbonated silicate melts should have 25–18 wt% CO2 contents, with lower SiO2 and Al2O3 contents, and higher CaO/Al2O3 values, similar to those of nephelinites and basanites, and have higher εNd values (2 to 6). The carbonatited silicate melts migrated upward and metasomatized the overlying lithospheric mantle, resulting in carbonated peridotite in the bottom of continental lithosphere beneath eastern China. As the craton lithospheric geotherm intersects the solidus of carbonated peridotite at 130 km in depth, the carbonated peridotite in the bottom of cratonic lithosphere should be partially melted, thus its physical characters are similar to the asthenosphere and it could be easily replaced by convective mantle. The newly formed carbonated silicate melts will migrate upward and metasomatize the overlying lithospheric mantle. Similarly, such metasomatism and partial melting processes repeat, and as a result the cratonic lithosphere in North China would be thinning and the carbonated silicate partial melts will be transformed to high-SiO2 alkali basalts with lower εNd values (to −2). As the lithospheric thinning goes on, initial melting depth of carbonated peridotite must decrease from 130 km to close 70 km, because the craton geotherm changed to approach oceanic lithosphere geotherm along with lithospheric thinning of the North China craton. Consequently, the interaction between carbonated silicate melt and cratonic lithosphere is a possible mechanism for lithosphere thinning of the North China craton during the late Cretaceous and Cenozoic. Based on the age statistics of low δ26Mg basalts in eastern China, the lithospheric thinning processes caused by carbonated metasomatism and partial melting in eastern China are limited in a timespan from 106 to 25 Ma, but increased quickly after 25 Ma. Therefore, there are two peak times for the lithospheric thinning of the North China craton: the first peak in 135−115 Ma simultaneously with the cratonic destruction, and the second peak caused by interaction between carbonated silicate melt and lithosphere mainly after 25 Ma. The later decreased the lithospheric thickness to about 70 km in the eastern part of North China craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basu A R, Wang Junwen A R, Huang Wankang A R, Xie Guanghong A R, Tatsumoto M. 1991. Major element, REE, and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: Implications for their origin from suboceanic-type mantle reservoirs. Earth Planet Sci Lett, 105: 149–169

    Article  Google Scholar 

  • Chantel J, Manthilake G, Andrault D, Novella D, Yu T, Wang Y. 2016. Experimental evidence supports mantle partial melting in the asthenosphere. Sci Adv, 2: e1600246–e1600246

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Hinton R W, Siena F, Upton B G J. 1999. Carbonatite metasomatism of the oceanic upper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths of grande comore, Indian Ocean. J Petrol, 40: 133–165

    Article  Google Scholar 

  • Dalton J A, Wood B J. 1993. The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet Sci Lett, 119: 511–525

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M, Stalker K. 2006. Immiscible Transition from Carbonate-rich to Silicate-rich Melts in the 3GPa Melting Interval of Eclogite + CO2 and Genesis of Silica-undersaturated Ocean Island Lavas. J Petrol, 47: 647–671

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M, Smith N D. 2007. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of Alkalic Ocean Island basalts. J Petrol, 48: 2093–2124

    Article  Google Scholar 

  • Dasgupta R, Hirschmann M M. 2010. The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett, 298: 1–13

    Article  Google Scholar 

  • Dasgupta R, Mallik A, Tsuno K, Withers A C, Hirth G, Hirschmann M M. 2013. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature, 493: 211–215

    Article  Google Scholar 

  • Dasgupta R. 2013. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev Mineral Geo Chem, 75: 183–229

    Article  Google Scholar 

  • Fan W M, Menzies M A. 1992. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotecton Metalloge, 16: 171–180

    Google Scholar 

  • Gao S, Rudnick R L, Yuan H L, Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. 2004. Recycling lower continental crust in the North China craton. Nature, 432: 892–897

    Article  Google Scholar 

  • Gao S, Rudnick R L, Xu W L, Yuan H L, Liu Y S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X R, Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet Sci Lett, 270: 41–53

    Article  Google Scholar 

  • Grassi D, Schmidt M W. 2011. The Melting of Carbonated Pelites from 70 to 700 km Depth. J Petrol, 52: 765–789

    Article  Google Scholar 

  • Guzmics T, Zajacz Z, Mitchell R H, Szabó C, Wälle M. 2015. The role of liquid-liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: Insights from Kerimasi melt inclusions. Contrib Mineral Petrol, 169: 17

    Article  Google Scholar 

  • Hauff F, Hoernle K, Schmidt A. 2003. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochem Geophys Geosyst, 4: 8913

    Article  Google Scholar 

  • Hauri E H, Shimizu N, Dieu J J, Hart S R. 1993. Evidence for hotspotrelated carbonatite metasomatism in the oceanic upper mantle. Nature, 365: 221–227

    Article  Google Scholar 

  • Hoefs J. 2009. Stable Isotope Geochemistry. Springer Berlin

    Google Scholar 

  • Hofmann A W, Jochum K P, Seufert M, White W M. 1986. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet Sci Lett, 79: 33–45

    Article  Google Scholar 

  • Hu Y, Teng F Z, Zhang H F, Xiao Y, Su B X. 2016. Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites. Geochim Cosmochim Acta, 185: 88–111

    Article  Google Scholar 

  • Huang K J, Teng F Z, Plank T, Staudigel H, Hu Y, Bao Z Y. 2018. Magnesium isotopic composition of the altered oceanic crust: Implications for the magnesium geochemical cycle. Geochim Cosmochim Acta, submitted.

    Google Scholar 

  • Huang J, Zhao D. 2006. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 111: B09305

    Google Scholar 

  • Huang J, Li S G, Xiao Y, Ke S, Li W Y, Tian Y. 2015. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications. Geo Chim Cosmo Chim Acta, 164: 298–317

    Article  Google Scholar 

  • Huang J, Xiao Y. 2016. Mg-Sr isotopes of low-δ26Mg basalts tracing recycled carbonate species: Implication for the initial melting depth of the carbonated mantle in Eastern China. Int Geol Rev, 58: 1350–1362

    Article  Google Scholar 

  • Ionov D. 1998. Trace element composition of mantle-derived carbonates and coexisting phasesin peridotite xenoliths from Alkali Basalts. J Petrol, 39: 1931–1941

    Article  Google Scholar 

  • Ke S, Teng F Z, Li S G, Gao T, Liu S A, He Y, Mo X. 2016. Mg, Sr, and O isotope geochemistry of syenites from northwest Xinjiang, China: Tracing carbonate recycling during Tethyan oceanic subduction. Chem Geol, 437: 109–119

    Article  Google Scholar 

  • Kessel R, Schmidt M W, Ulmer P, Pettke T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 437: 724–727

    Article  Google Scholar 

  • Kogiso T, Tatsumi Y, Nakano S. 1997. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett, 148: 193–205

    Article  Google Scholar 

  • Kushiro I, Satake H, Akimoto S. 1975. Carbonate-silicate reactions at high presures and possible presence of dolomite and magnesite in the upper mantle. Earth Planet Sci Lett, 28: 116–120

    Article  Google Scholar 

  • Kusky T M, Windley B F, Wang L, Wang Z, Li X, Zhu P. 2014. Flat slab subduction, trench suction, and craton destruction: Comparison of the North China, Wyoming, and Brazilian cratons. Tectonophysics, 630: 208–221

    Article  Google Scholar 

  • Lee C T A, Luffi P, Plank T, Dalton H, Leeman W P. 2009. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet Sci Lett, 279: 20–33

    Article  Google Scholar 

  • Li H Y, Xu Y G, Ryan J G, Huang X L, Ren Z Y, Guo H, Ning Z G. 2016. Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton: Discrimination of contributions from the subducted Pacific slab. Geochim Cosmochim Acta, 178: 1–19

    Article  Google Scholar 

  • Li S G, He Y S, Wang S J. 2013. Process and mechanism of mountain-root removal of the Dabie Orogen—Constraints from geochronology and geochemistry of post-collisional igneous rocks. Chin Sci Bull, 58: 4411–4417

    Article  Google Scholar 

  • Li S G, Yang W, Ke S, Meng X, Tian H, Xu L, He Y, Huang J, Wang X C, Xia Q, Sun W, Yang X, Ren Z Y, Wei H, Liu Y, Meng F, Yan J. 2017. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Nat Sci Rev, 4: 111–120

    Google Scholar 

  • Li Z X, Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35: 179–182

    Article  Google Scholar 

  • Liu C Q, Masuda A, Xie G H. 1994. Major-and trace-element composi-tions of Cenozoic basalts in eastern China: Petrogenesis and mantle source. Chem Geol, 114: 19–42

    Article  Google Scholar 

  • Liu J, Carlson R W, Rudnick R L, Walker R J, Gao S, Wu F. 2012. Comparative Sr-Nd-Hf-Os-Pb isotope systematics of xenolithic peridotites from Yangyuan, North China Craton: Additional evidence for a Paleoproterozoic age. Chem Geol, 332-333: 1–14

    Article  Google Scholar 

  • Liu J, Rudnick R L, Walker R J, Xu W, Gao S, Wu F. 2015. Big insights from tiny peridotites: Evidence for persistence of Precambrian lithosphere beneath the eastern North China Craton. Tectonophysics, 650: 104–112

    Article  Google Scholar 

  • Liu S A, Li S, Guo S, Hou Z, He Y. 2012. The Cretaceous adakitic–basaltic–granitic magma sequence on south-eastern margin of the North China Craton: Implications for lithospheric thinning mechanism. Lithos, 134-135: 163–178

    Article  Google Scholar 

  • Liu X, Zhao D, Li S, Wei W. 2017. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications. Earth Planet Sci Lett, 464: 166–174

    Article  Google Scholar 

  • Ma J, Xu Y. 2006. Old EMI-type enriched mantle under the middle North China Craton as indicated by Sr and Nd isotopes of mantle xenoliths from Yangyuan, Hebei Province. Chin Sci Bull, 51: 1343–1349

    Article  Google Scholar 

  • McKenzie D, Bickle M J. 1988. The volume and composition of melt generated by extension of the lithosphere. J Petrol, 29: 625–679

    Article  Google Scholar 

  • Meng F, Gao S, Niu Y, Liu Y, Wang X. 2015. Mesozoic-Cenozoic mantle evolution beneath the North China Craton: A new perspective from Hf–Nd isotopes of basalts. Gondwana Res, 27: 1574–1585

    Article  Google Scholar 

  • Morlidge M, Pawley A, Droop G. 2006. Double carbonate breakdown reactions at high pressures: An experimental study in the system CaOMgO-FeO-MnO-CO2. Contrib Mineral Petrol, 152: 365–373

    Article  Google Scholar 

  • Niu Y L. 2005. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geol J China Univ, 11: 9–46

    Google Scholar 

  • de Paula-Santos G M, Caetano-Filho S, Babinski M, Enzweiler J. 2018. Rare earth elements of carbonate rocks from the Bambuí Group, southern São Francisco Basin, Brazil, and their significance as paleoenvironmental proxies. Precambrian Res, 305: 327–340

    Article  Google Scholar 

  • Pearce J A, Kempton P D, Nowell G M, Noble S R. 1999. Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific Arc-Basin Systems. J Petrol, 40: 1579–1611

    Article  Google Scholar 

  • Pilet S, Baker M B, Muntener O, Stolper E M. 2011. Monte carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of Alkaline Basalts. J Petrol, 52: 1415–1442

    Article  Google Scholar 

  • Plank T, Langmuir C H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol, 145: 325–394

    Article  Google Scholar 

  • Poli S, Franzolin E, Fumagalli P, Crottini A. 2009. The transport of carbon and hydrogen in subducted oceanic crust: An experimental study to 5 GPa. Earth Planet Sci Lett, 278: 350–360

    Article  Google Scholar 

  • Prytulak J, Elliott T. 2007. TiO2 enrichment in ocean island basalts. Earth Planet Sci Lett, 263: 388–403

    Article  Google Scholar 

  • Ringwood A E. 1990. Slab-mantle interactions. Chem Geol, 82: 187–207

    Article  Google Scholar 

  • Sato K, Katsura T. 2001. Experimental investigation on dolomite dissociation into aragonite+magnesite up to 8.5 GPa. Earth Planet Sci Lett, 184: 529–534

    Article  Google Scholar 

  • Sakuyama T, Tian W, Kimura J I, Fukao Y, Hirahara Y, Takahashi T, Senda R, Chang Q, Miyazaki T, Obayashi M, Kawabata H, Tatsumi Y. 2013. Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: Constraints from Cenozoic alkaline basalts in eastern China. Chem Geol, 359: 32–48

    Article  Google Scholar 

  • Song Y, Frey F A. 1989. Geochemistry of peridotite xenoliths in basalt from Hannuoba, Eastern China: Implications for subcontinental mantle heterogeneity. Geochim Cosmochim Acta, 53: 97–113

    Article  Google Scholar 

  • Song Y, Frey F A, Zhi X. 1990. Isotopic characteristics of Hannuoba basalts, eastern China: Implications for their petrogenesis and the composition of subcontinental mantle. Chem Geol, 88: 35–52

    Article  Google Scholar 

  • Sun W, Ding X, Hu Y H, Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth Planet Sci Lett, 262: 533–542

    Article  Google Scholar 

  • Tang Y J, Zhang H F, Ying J F, Zhang J, Liu X M. 2008. Refertilization of ancient lithospheric mantle beneath the central North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths. Lithos, 101: 435–452

    Article  Google Scholar 

  • Tao R, Zhang L, Fei Y, Liu Q. 2014. The effect of Fe on the stability of dolomite at high pressure: Experimental study and petrological observation in eclogite from southwestern Tianshan, China. Geochim Cosmochim Acta, 143: 253–267

    Article  Google Scholar 

  • Teng F Z, Li W Y, Ke S, Marty B, Dauphas N, Huang S, Wu F Y, Pourmand A. 2010. Magnesium isotopic composition of the Earth and chondrites. Geochim Cosmochim Acta, 74: 4150–4166

    Article  Google Scholar 

  • Thomson A R, Walter M J, Kohn S C, Brooker R A. 2016. Slab melting as a barrier to deep carbon subduction. Nature, 529: 76–79

    Article  Google Scholar 

  • Tian H C, Yang W, Li S G, Ke S, Chu Z Y. 2016. Origin of low δ26Mg basalts with EM-I component: Evidence for interaction between enriched lithosphere and carbonated asthenosphere. Geochim Cosmochim Acta, 188: 93–105

    Article  Google Scholar 

  • Tian H, Yang W, Li S G, Ke S, Duan X Z. 2018. Low δ26Mg volcanic rocks of Tengchong in Southwestern China: A dep carbon cycle induced by surprcritical liquids. Geochim Cosmochim Acta, submitted

    Google Scholar 

  • Turekian K K, Wedepohl K H. 1961. Distribution of the Elements in Some Major Units of the Earth’s Crust. Geol Soc Amer Bull, 72: 175–192

    Article  Google Scholar 

  • Wang C, Liu Y, Zhang J, Jin Z. 2016. Carbonate melt form subduction zone: The key for Craton destruction. Goldschmidt Conference Abstracts, 3307

  • Wang S J, Teng F Z, Rudnick R L, Li S G. 2015. The behavior of magnesium isotopes in low-grade metamorphosed mudrocks. Geochim Cosmochim Acta, 165: 435–448

    Article  Google Scholar 

  • Wang S J, Teng F Z, Li S G, Zhang L F, Du J X, He Y S, Niu Y. 2017. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes. Lithos, 290-291: 94–103

    Article  Google Scholar 

  • Windley B F, Maruyama S, Xiao W J. 2010. Delamination/thinning of subcontinental lithospheric mantle under Eastern China: The role of water and multiple subduction. Am J Sci, 310: 1250–1293

    Article  Google Scholar 

  • Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett, 231: 53–72

    Article  Google Scholar 

  • Wu F Y, Lin J Q, Wilde S A, Zhang X, Yang J H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 233: 103–119

    Article  Google Scholar 

  • Xiao Y, Teng F Z, Zhang H F, Yang W. 2013. Large magnesium isotope fractionation in peridotite xenoliths from eastern North China craton: Product of melt-rock interaction. Geochim Cosmochim Acta, 115: 241–261

    Article  Google Scholar 

  • Xu Y G. 2001. Thermo-tectonic destruction of the archaean lithospheric keel beneath the sino-korean craton in china: Evidence, timing and mechanism. Phys Chem Earth Part A-Solid Earth Geodesy, 26: 747–757

    Article  Google Scholar 

  • Xu Y G, Huang X L, Ma J L, Wang Y B, Iizuka Y, Xu J F, Wang Q, Wu X Y. 2004. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton: constraints from SHRIMP zircon U–Pb chronology and geochemistry of Mesozoic plutons from western Shandong. Contrib Mineral Petrol, 147: 750–767

    Article  Google Scholar 

  • Xu Y G, Ma J L, Frey F A, Feigenson M D, Liu J F. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem Geol, 224: 247–271

    Article  Google Scholar 

  • Yang W, Li S. 2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos, 102: 88–117

    Article  Google Scholar 

  • Yang W, Teng F Z, Zhang H F, Li S G. 2012. Magnesium isotopic systematics of continental basalts from the North China craton: Implications for tracing subducted carbonate in the mantle. Chem Geol, 328: 185–194

    Article  Google Scholar 

  • Zeng G, Chen L H, Xu X S, Jiang S Y, Hofmann A W. 2010. Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China. Chem Geol, 273: 35–45

    Article  Google Scholar 

  • Zeng G, Chen L H, Hofmann A W, Jiang S Y, Xu X S. 2011. Crust recycling in the sources of two parallel volcanic chains in Shandong, North China. Earth Planet Sci Lett, 302: 359–368

    Article  Google Scholar 

  • Zhang G L, Chen L H, Jackson M G, Hofmann A W. 2017. Evolution of carbonated melt to alkali basalt in the South China Sea. Nat Geosci, 10: 229–235

    Article  Google Scholar 

  • Zhang H F. 2005. Transformation of lithospheric mantle through peridotitemelt reaction: A case of Sino-Korean craton. Earth Planet Sci Lett, 237: 768–780

    Article  Google Scholar 

  • Zheng J P, Griffin W L, O’Reilly S Y, Yu C M, Zhang H F, Pearson N, Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta, 71: 5203–5225

    Article  Google Scholar 

  • Zheng J P, Lu F X. 1999. Mantle xenoliths from kimberlites, Shandong and Liaoning: Paleozoic lithospheric mantle character and its heterogeneity (in Chinese). Acta Petrol Sin, 15: 65–74

    Google Scholar 

  • Zhi X, Song Y, Frey F A, Feng J, Zhai M. 1990. Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt. Chem Geol, 88: 1–33

    Article  Google Scholar 

  • Zou H, Zindler A, Xu X, Qi Q. 2000. Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chem Geol, 171: 33–47

    Article  Google Scholar 

  • Zhou M F, Robinson P T, Su B X, Gao J F, Li J W, Yang J S, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments. Gondwana Res, 26: 262–283

    Article  Google Scholar 

  • Zhu R X, Chen L, Wu F Y, Liu J L. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Sci China Earth Sci, 54: 789–797

    Article  Google Scholar 

  • Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012. Destruction of the North China Craton. Sci China Earth Sci, 55: 1565–1587

    Article  Google Scholar 

  • Zhu R X, Zheng T Y. 2009. Destruction geodynamics of the North China craton and its Paleoproterozoic plate tectonics. Sci Bull, 54: 3354–3366

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Rixiang Zhu for inviting Shuguang Li to write this paper. We sincerely thank Prof. Jingao Liu for constructive comments and English editing. We are also grateful to Prof. Jinshui Huang for providing geophysical references and Dr. Lijuan Xu and anonymous reviewers for their constructive comments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 41730214, 41473036, 91014007, 41230209) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB 18000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, Y. Formation time of the big mantle wedge beneath eastern China and a new lithospheric thinning mechanism of the North China craton—Geodynamic effects of deep recycled carbon. Sci. China Earth Sci. 61, 853–868 (2018). https://doi.org/10.1007/s11430-017-9217-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9217-7

Keywords

Navigation