Skip to main content
Log in

Old EMI-type enriched mantle under the middle North China Craton as indicated by Sr and Nd isotopes of mantle xenoliths from Yangyuan, Hebei Province

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

Mantle xenoliths hosted in Tertiary alkali basalts in Yangyuan, Hebei Province, located to the west of the Taihangshan gravity lineament, include Iherzolites, harzburgites and pyroxenite. In the plot of olivine mode vs Fo, most of the Yangyuan peridotites deviate from the oceanic trend, falling within the fields of Archean and Proterozoic mantles. Some LREE-enriched samples exhibit EMI-type isotopic signature with ɛ Nd ranging from −6.9 to −10.6 and 87Sr/86Sr from 0.7044 to 0.7047. By contrast, another LREE-enriched sample has a positive ɛ Nd (+5.7) similar to that for LREE-depleted peridotites. This observation suggests that the upper mantle beneath Yangyuan underwent a multi-stage metasomatism. Given the fact that EMI-type isotopic signature is usually observed in the lithosphere mantle underneath ancient cratons, the isotopic composition of the Yangyuan xenoliths provides new evidence for the existence of the old lithosphere mantle beneath western North China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffin W L, Zhang A D, O’Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M, Chung S L, Lo C H, et al., eds. Mantle Dynamics and Plate Interactions in East Asia. Vol 27. Washington: Am Geophys Union Geodyn Ser, 1998. 107–126

    Google Scholar 

  2. Menzies M A, Xu Y G. Geodynamics of the North China Craton. In: Flower M, Chung S L, Lo C H, et al., eds. Mantle dynamics and plate interactions in east Asia. Vol 27. Washington: Am Geophys Union Geodyn Ser, 1998, 155–165

    Google Scholar 

  3. Xu Y G, Chung S L, Ma J L, et al. Contrasting Cenozoic lithospheric evolution and architecture in western and eastern Sino-Korean Craton: Constraints from geochemistry of basalts and mantle xenoliths. J Geol, 2004, 112(5): 593–605

    Article  Google Scholar 

  4. Xu Y G. Lithospheric thinning beneath North China: A temporal and spatial perspective. Geol J Chin Univ (in Chinese), 2004, 10(3): 324–331

    Google Scholar 

  5. Zheng J P, O’Reilly S Y, Griffin W L, et al. Relict refractory mantle beneath the eastern North China Block: Significance for lithospheric evolution. Lithos, 2001, 57(1): 43–66

    Article  Google Scholar 

  6. Gao S, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth Planet Sci Lett, 2002, 198(3–4): 307–322

    Article  Google Scholar 

  7. Li X H, Liu Y, Tu X L, et al. Precise determination of chemical compositon in silicate rocks using ICP-AES and ICP-MS: A comparative study of sample digestion techniques of alkali fusion and acid dissolution. Geochim (in Chinese), 2002, 31(3): 289–294

    Google Scholar 

  8. Liu Y, Liu H C, Li X H. Simultaneous and precise determination of 40 trace elements in rock sample using ICP-MS. Geochim (in Chinese), 1996, 25(6): 552–558

    Google Scholar 

  9. Xu Y G. Evidence for crustal components in mantle source and constraints on recycling mechanism: pyroxenite xenoliths from Hannuoba, North China. Chem Geol, 2002, 182(2–4): 301–322

    Article  Google Scholar 

  10. Wei G J, Liang X R, Li X H, et al. Precise measurement of Sr isotopic composition of liquid and solid base using (LP)MC-ICPMS. Geochim (in Chinese), 2002, 31(3): 295–299

    Google Scholar 

  11. Liang X R, Wei G J, Li X H, et al. Fast and precise measurement for 143Nd/144Nd isotopic ratios using the Multiple-Collectors Inductively Coupled Plasma-Mass Spectrometer (MC-ICPMS). Rock and Mineral Analysis (in Chinese), 2002, 21(4): 247–251

    Google Scholar 

  12. Brey G G, Kohler T. Geothermobarometry in 4-phase lherzolites II: New thermobarometers, and practical assessment of existing thermobarometers. J Petrol, 1990, 31(6): 1353–1378

    Google Scholar 

  13. Sun S S, McDonough W F. Chemical and isotope systematics of oceanic basalts, eastern China: implications for mantle composition and process. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Vol 42. London: Geol Soc Spec, 1989. 313–345

    Google Scholar 

  14. Zindler A, Hart S R. Chemical geodynamics. An Rev Earth Planet Sci, 1986, 14: 493–571

    Article  Google Scholar 

  15. Song Y, Frey F A. Geochemistry of peridotite xenoliths in basalt from Hannuoba, Eastern China: Implication for subcontinental mantle heterogeneity. Geochim Cosmochim Acta, 1989, 53(1): 97–113

    Article  Google Scholar 

  16. Tatsumoto M, Basu A R, Hang W K, et al. Sr, Nd and Pb isotopes of ultramafic xenoliths in volcanic rocks of Eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth Planet Sci Lett, 1992, 113(1): 107–128

    Article  Google Scholar 

  17. Fan W M, Zhang H F, Baker J, et al. On and off the North China craton: where is the Archaean keel? J Petrol, 2000, 41(7): 933–950

    Article  Google Scholar 

  18. Ma J L, Xu Y G. Petrology and geochemistry of the Cenozoic Basalts from Yangyuan of Hebei Province and Datong of Shanxi Province: Implications for the deep process in the Western North China Craton. Geochim (in Chinese), 2004, 33(1): 75–88

    Google Scholar 

  19. Kelemen P B, Dick H J B, Quick J E. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature, 1992, 358(6388): 635–641

    Article  Google Scholar 

  20. Xu Y G, Menzies M A, Thirlwall M F, et al. “Reactive” harzburgites from Huinan, NE China: products of lithosphere-asthenosphere interaction during lithospheric thinning? Geochim Cosmochim Acta, 2003, 67(3): 487–505

    Article  Google Scholar 

  21. Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal periodtite. J Geophy Res, 1990, 95(B3): 2661–2678

    Article  Google Scholar 

  22. Navon O, Stolper E. Geochemical consequence of melt percolation: The upper mantle as a chromatographic column. J Geol, 1987, 95: 285–307

    Article  Google Scholar 

  23. Frey F A, Green D H. The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta, 1974, 38(7): 1023–1059

    Article  Google Scholar 

  24. McKenzie D P. Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett, 1989, 95(1): 53–72

    Article  Google Scholar 

  25. Bedini R M, Bodinier J L, Dautria J M, et al. Evolution of LILE-enriched small melt fractions in the lithospheric mantle: A case study from the Eastern African Rift. Earth Planet Sci Lett, 1997, 153(1): 67–83

    Article  Google Scholar 

  26. Boyd F R. Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett, 1989, 96(1): 15–26

    Article  Google Scholar 

  27. Menzies M A, Archean, Proterozoic, and Phanerozoic lithospheres. In: Menzies M A, eds. Continental mantle. London: Oxford Science Publications, 1990. 67–86

    Google Scholar 

  28. Xu Y G. Thermo-tectonic destruction of the Archaean lithospheric keel beneath eastern China: evidence, timing and mechanism. Phys Chem Earth (A), 2001, 26(9–10): 747–757

    Article  Google Scholar 

  29. Richardson S H, Gurney J J, Erlank A J, et al. Origin of diamonds in old enriched mantle. Nature, 1984, 310(5974): 198–202

    Article  Google Scholar 

  30. Menzies M, Rogers N, Tindle A, et al. Metasomatic enrichment processes in lithospheric peridotites, an effect of asthenospherelithosphere interaction. In: Menzies M, Hawkesworth C J, eds. Mantle Metasomatism. London: Academic Press, 1987. 313–361

    Google Scholar 

  31. Pearson D G, Canil D, Shirey S B. Mantle Samples included in volcanic rocks: xenoliths and diamonds. In: Holland H D, Turekin K K, eds. Treatise of Geochemistry. Oxford: Elsevier, 2003. 171–275

    Google Scholar 

  32. Stosch H G, Lugmair G W, Kovalenko V I. Spinel peridotite xenoliths from the Tariat Depression, Mongolia. II: Geochemistry and Nd and Sr isotopic composition and their implication for the evolution of the sub-continental lithosphere. Geochim Cosmochim Acta, 1986, 50(12): 2601–2614

    Article  Google Scholar 

  33. Falloon T J, Green D H, Harton C J, et al. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. J Petrol, 1988, 29(6): 1257–1282

    Google Scholar 

  34. O’Reilly S Y, Griffin W L. 4-D lithosphere mapping: methodology and examples. Tectonophysics, 1996, 262(1): 3–18

    Article  Google Scholar 

  35. Xu Y G, Sun M, Yan W, et al. Xenolith evidence for polybaric melting and stratification of the upper mantle beneath South China. J Asian Earth Sci, 2002, 20(8): 937–954

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Yigang.

About this article

Cite this article

Ma, J., Xu, Y. Old EMI-type enriched mantle under the middle North China Craton as indicated by Sr and Nd isotopes of mantle xenoliths from Yangyuan, Hebei Province. CHINESE SCI BULL 51, 1343–1349 (2006). https://doi.org/10.1007/s11434-006-1343-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-1343-6

Keywords

Navigation