Skip to main content
Log in

Heterogeneous destruction of the North China Craton: Coupled constraints from seismology and geodynamic numerical modeling

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The prevailing academic view regards mantle flow and the metasomatism triggered by the subduction of the Pacific plate as the cause and mechanism for the destruction of the North China Craton (NCC). However, the geodynamic destruction process remains ambiguous, necessitating detailed information at this stage. Combining the structural images obtained by the exploration of dense seismic arrays and the geodynamic simulations inspired by numerical modeling, this paper arrives at the following conclusions: the spatial variation of the P- and S-wave velocities, as well as their velocity ratio in the mantle transition zone, are key evidences of the nonuniform dehydration of the Pacific plate, the subducted plate induces hot upwellings in the mantle transition zone (MTZ), resulting in the heterogeneous distribution of the melt/fluid beneath the craton, characterized by small scale anomalies in the seismic velocity field, and as revealed by dense seismic array observation, the heterogeneities in the upper mantle structure and deformation are the synthetic results of lithospheric strain localization and the heterogeneous distribution of the melt/fluid. It is known that the nonuniform dehydration of the Pacific slab and the heterogeneous distribution of the melt/fluid have occured in the Cenozoic. If these scenarios could have already occurred in the Early Cretaceous, their interaction with the NCC lithosphere would be the dynamic mechanism for the heterogeneous lithospheric destruction of the NCC. The inference in this study is significant for further reconciling the multidisciplinary evidences in the NCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai Y S, Zheng T Y, Xu W W, He Y M, Dong D. 2003. A complex 660 km discontinuity beneath northeast China. Earth Planet Sci Lett, 212: 63–71

    Article  Google Scholar 

  • Aulbach S, Massuyeau M, Gaillard F. 2017. Origins of cratonic mantle discontinuities: A view from petrology, geochemistry and thermodynamic models. Lithos, 268-271: 364–382

    Article  Google Scholar 

  • Bercovici D, Karato S I. 2003. Whole-mantle convection and the transitionzone water filter. Nature, 425: 39–44

    Article  Google Scholar 

  • Chen L. 2017. Layering of subcontinental lithospheric mantle. Chin Sci Bull, 62:1030–1034

    Article  Google Scholar 

  • Chen L. 2010. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos, 120: 96–115

    Article  Google Scholar 

  • Chen L, Ai Y. 2009. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. J Geophys Res, 114: B06307

    Google Scholar 

  • Chen L, Jiang M M, Yang J H, Wei Z G, Liu C Z, Ling Y. 2014. Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton. Geology, 42: 223–226

    Article  Google Scholar 

  • Chen L, Zheng T Y, Xu W W. 2006. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: Constructed from wave equation based receiver function migration. J Geophys Res, 111: B09312

    Google Scholar 

  • Chen Y, Zhang Y, Graham D, Su S, Deng J. 2007. Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China. Lithos, 96: 108–126

    Article  Google Scholar 

  • Goes S, van der Lee S. 2002. Thermal structure of the North American uppermost mantle inferred from seismic tomography. J Geophys Res, 107: 2050

    Article  Google Scholar 

  • Griffin W L, Andi Z, O’reilly S Y, Ryan C G. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. Mantle Dyn Plate Interact East Asia, 107–126

    Chapter  Google Scholar 

  • Hack A C, Thompson A B. 2011. Density and viscosity of hydrous magmas and related fluids and their role in Subduction Zone processes. J Petrol, 52: 1333–1362

    Article  Google Scholar 

  • He L J. 2014. Numerical modeling of convective erosion and peridotitemelt interaction in big mantle wedge: Implications for the destruction of the North China Craton. J Geophys Res-Solid Earth, 119: 3662–3677

    Article  Google Scholar 

  • Hirth G, Evans R L, Chave A D. 2000. Comparison of continental and oceanic mantle electrical conductivity: Is the Archean lithosphere dry? Geochem Geophys Geosyst, 1: 1030–1039

    Article  Google Scholar 

  • Hirth G, Kohlstedt D. 2003. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. Geophys Monograph Ser, 138: 83–105

    Google Scholar 

  • Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 111: B09305

    Google Scholar 

  • Huang X, Xu Y, Karato S I. 2005. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature, 434: 746–749

    Article  Google Scholar 

  • Hooper P R, Camp V E, Reidel S P, Ross M E. 2007. The origin of the Columbia River flood basalt province: Plume versus nonplume models. Geol Soc Am Spec Pap 430: 635–668

    Google Scholar 

  • Iwamori H. 2004. Phase relations of peridotites under H2O-saturated conditions and ability of subducting plates for transportation of H2O. Earth Planet Sci Lett, 227: 57–71

    Article  Google Scholar 

  • Li C, van der Hilst R D. 2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. J Geophys Res, 115: B07308

    Google Scholar 

  • Li J, Wang X, Wang X, Yuen D A. 2013. P and SH velocity structure in the upper mantle beneath Northeast China: Evidence for a stagnant slab in hydrous mantle transition zone. Earth Planet Sci Lett, 367: 71–81

    Article  Google Scholar 

  • Li J, Yuen D A. 2014. Mid-mantle heterogeneities associated with Izanagi plate: Implications for regional mantle viscosity. Earth Planet Sci Lett, 385: 137–144

    Article  Google Scholar 

  • Li S, Zhao S, Liu X, Cao H, Yu S, Li X, Somerville I, Yu S, Suo Y. 2017. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia. Earth-Sci Rev, https://doi.org/10.1016/j.earscirev.2017.01.011

    Google Scholar 

  • Liao J, Gerya T. 2014. Influence of lithospheric mantle stratification on craton extension: Insight from two-dimensional thermo-mechanical modeling. Tectonophysics, 631: 50–64

    Article  Google Scholar 

  • Lin W, Wang J, Liu F, Ji W B, Wang Q C. 2013. Late Mesozoic extension structures on the North China Craton and adjacent regions and its geodynamics (in Chinese). Acta Petrol Sin, 29: 1791–1810

    Google Scholar 

  • Liu L J, Stegman D R. 2012. Origin of Columbia River flood basalt controlled by propagating rupture of the Farallon slab. Nature, 482: 386–389

    Article  Google Scholar 

  • Liu J, Xia Q K, Deloule E, Ingrin J, Chen H, Feng M. 2015. Water content and oxygen isotopic composition of alkali basalts from the Taihang Mountains, China: Recycled oceanic components in the mantle source. J Petrol, 56: 681–702

    Article  Google Scholar 

  • Liu X, Zhao D, Li S, Wei W. 2017. Age of the subducting Pacific slab beneath East Asia and its geodynamic implications. Earth Planet Sci Lett, 464: 166–174

    Article  Google Scholar 

  • Lu G, Kaus B J P, Zhao L. 2011. Thermal localization as a potential mechanism to rift cratons. Phys Earth Planet Inter, 186: 125–137

    Article  Google Scholar 

  • Karato S, Jung H. 1998. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet Sci Lett, 157: 193–207

    Article  Google Scholar 

  • Karato S I, Jung H, Katayama I, Skemer P. 2008. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annu Rev Earth Planet Sci, 36: 59–95

    Article  Google Scholar 

  • Karato S I, Olugboji T, Park J. 2015. Mechanisms and geologic significance of the mid-lithosphere discontinuity in the continents. Nat Geosci, 8: 509–514

    Article  Google Scholar 

  • Menzies M A, Fan W, Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. Geol Soc Lond Spec Publ, 76: 71–81

    Article  Google Scholar 

  • Menzies M A, Xu Y G. 1998. Mantle dynamics and plate interactions in East Asia. 155–165

    Book  Google Scholar 

  • Müller R D, Sdrolias M, Gaina C, Steinberger B, Heine C. 2008a. Longterm sea-level fluctuations driven by ocean basin dynamics. Science, 319: 1357–1362

    Article  Google Scholar 

  • Müller R D, Sdrolias M, Gaina C, Roest W R. 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst, 9: Q04006

    Article  Google Scholar 

  • Ni J, Liu J, Tang X, Yang H, Xia Z, Zhang T. 2016. Early Cretaceous exhumation of the Sulu orogenic belt as a consequence of the eastern Eurasian tectonic extension: insights from the newly discovered Wulian metamorphic core complex, eastern China. J Geol Soc, 173: 531–549

    Article  Google Scholar 

  • Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T. 2004. Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter, 143-144: 255–269

    Article  Google Scholar 

  • Pearson D G, Brenker F E, Nestola F, McNeill J, Nasdala L, Hutchison M T, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L. 2014. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507: 221–224

    Article  Google Scholar 

  • Savage M K. 1999. Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev Geophys, 37: 65–106

    Article  Google Scholar 

  • Schmandt B, Humphreys E. 2010. Complex subduction and small-scale convection revealed by body-wave tomography of the western United States upper mantle. Earth Planet Sci Lett, 297: 435–445

    Article  Google Scholar 

  • Seton M, Müller R D, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S, Chandler M. 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci Rev, 113: 212–270

    Article  Google Scholar 

  • Sleep N H. 2005. Evolution of the continental lithosphere. Annu Rev Earth Planet Sci, 33: 369–393

    Article  Google Scholar 

  • Thybo H. 2006. The heterogeneous upper mantle low velocity zone. Tectonophysics, 416: 53–79

    Article  Google Scholar 

  • Wang D, Mookherjee M, Xu Y, Karato S I. 2006. The effect of water on the electrical conductivity of olivine. Nature, 443: 977–980

    Article  Google Scholar 

  • Wang J, Wu H, Zhao D. 2014. P wave radial anisotropy tomography of the upper mantle beneath the North China Craton. Geochem Geophys Geosyst, 15: 2195–2210

    Article  Google Scholar 

  • Wang K, Burov E, Gumiaux C, Chen Y, Lu G, Mezri L, Zhao L. 2015. Formation of metamorphic core complexes in non-over-thickened continental crust: A case study of Liaodong Peninsula (East Asia). Lithos, 238: 86–100

    Article  Google Scholar 

  • Wang T, Guo L, Zheng Y, Donskaya T, Gladkochub D, Zeng L, Li J, Wang Y, Mazukabzov A. 2012. Timing and processes of late Mesozoic midlower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos, 154: 315–345

    Article  Google Scholar 

  • Wang X X, Zhao L, Yang J F, Wang K, Lv G. 2017. Detectable time of upper mantle structure by seismology: Constrains from numerical modeling (in Chinese). Sci Sin Terrae, 47: 1110–1124

    Article  Google Scholar 

  • Wen L, Anderson D L. 1995. The fate of slabs inferred from seismic tomography and 130 million years of subduction. Earth Planet Sci Lett, 133: 185–198

    Article  Google Scholar 

  • Whittaker J M, Müller R D, Leitchenkov G, Stagg H, Sdrolias M, Gaina C, Goncharov A. 2007. Major Australian-Antarctic plate reorganization at Hawaiian-Emperor bend time. Science, 318: 83–86

    Article  Google Scholar 

  • Wirth E A, Long M D. 2014. A contrast in anisotropy across mid-lithospheric discontinuities beneath the central United States—A relic of craton formation. Geology, 42: 851–854

    Article  Google Scholar 

  • Wu F Y, Xu Y G, Gao S, Zheng J P. 2008. Lithospheric thinning and destruction of the North China Craton (in Chinese). Acta Petrol Sin, 24: 1145–1174

    Google Scholar 

  • Wu F Y, Xu Y G, Zhu R X, Zhang G W. 2014. Thinning and destruction of the cratonic lithosphere: A global perspective. Sci China Earth Sci, 57: 2878–2890

    Article  Google Scholar 

  • Xia Q K, Hao Y, Li P, Deloule E, Coltorti M, Dallai L, Yang X, Feng M. 2010. Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton. J Geophys Res, 115: B07207

    Article  Google Scholar 

  • Xia Q K, Liu J, Liu S C, Kovács I, Feng M, Dang L. 2013. High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere. Earth Planet Sci Lett, 361: 85–97

    Article  Google Scholar 

  • Xu X B, Zhao L, Wang K, Yang J F. 2018. Indication from finite-frequency tomography beneath North China Craton: The heterogeneity of Craton destruction. Sci China Earth Sci, https://doi.org/10.1007/s11430-017-9201-y

    Google Scholar 

  • Xu Y G. 2014. Recycled oceanic crust in the source of 90–40 Ma basalts in North and Northeast China: Evidence, provenance and significance. Geochim Cosmochim Acta, 143: 49–67

    Article  Google Scholar 

  • Xu Y G, Zhang H H, Qiu H N, Ge W C, Wu F Y. 2012. Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone? Chem Geol, 328: 168–184

    Article  Google Scholar 

  • Xu Z, Zhao Z F, Zheng Y F. 2012. Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China: Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos, 146-147: 202–217

    Article  Google Scholar 

  • Xu Z, Zheng Y F. 2017. Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. J Asian Earth Sci, 145: 233–259

    Article  Google Scholar 

  • Yang J F, Zhao L, Kaus B J P, Lu G, Wang K, Zhu R X. 2017. Slabtriggered wet upwellings produce large volumes of melt: Insights into the destruction of the North China Craton. Tectonophysics, https://10.1016/j.tecto.2017.04.009

    Google Scholar 

  • Yang J H, O’Reilly S, Walker R J, Griffin W, Wu F Y, Zhang M, Pearson N. 2010. Diachronous decratonization of the Sino-Korean craton: Geochemistry of mantle xenoliths from North Korea. Geology, 38: 799–802

    Article  Google Scholar 

  • Yuan X C. 1996. Velocity structure of the Qinling lithosphere and mushroom cloud model (in Chinese). Sci China Ser D-Earth Sci, 39: 235–244

    Google Scholar 

  • Zhang H F. 2009. Peridotite-melt interaction: a key point for the destruction of cratonic lithospheric mantle (in Chinese). Chin Sci Bull, 54: 3417

    Google Scholar 

  • Zhang J J, Zheng Y F, Zhao Z F. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos, 110: 305–326

    Article  Google Scholar 

  • Zhao L, Allen R M, Zheng T, Hung S H. 2009. Reactivation of an Archean craton: Constraints from P- and S-wave tomography in North China. Geophys Res Lett, 36: L17306

    Article  Google Scholar 

  • Zhao L, Allen R M, Zheng T Y, Zhu R X. 2012. High-resolution body wave tomography models of the upper mantle beneath eastern China and the adjacent areas. Geochem Geophys Geosyst, 13: Q06007

    Google Scholar 

  • Zhao L, Xue M. 2010. Mantle flow pattern and geodynamic cause of the North China Craton reactivation: Evidence from seismic anisotropy. Geochem Geophys Geosyst, 11: Q07010

    Article  Google Scholar 

  • Zhao L, Zheng T. 2005. Using shear wave splitting measurements to investigate the upper mantle anisotropy beneath the North China Craton: Distinct variation from east to west. Geophys Res Lett, 32: L10309

    Article  Google Scholar 

  • Zhao L, Zheng T Y, Lu G. 2013. Distinct upper mantle deformation of cratons in response to subduction: Constraints from SKS wave splitting measurements in eastern China. Gondwana Res, 23: 39–53

    Article  Google Scholar 

  • Zheng T Y, Chen L, Zhao L, Zhu R X. 2007. Crustal structure across the Yanshan belt at the northern margin of the North China Craton. Phys Earth Planet Inter, 161: 36–49

    Article  Google Scholar 

  • Zheng T Y, Zhao L, Chen L. 2005. A detailed receiver function image of the sedimentary structure in the Bohai Bay Basin. Phys Earth Planet Inter, 152: 129–143

    Article  Google Scholar 

  • Zheng T Y, Zhao L, Xu W W, Zhu R X. 2008. Insight into modification of North China Craton from seismological study in the Shandong Province. Geophys Res Lett, 35: L22305

    Article  Google Scholar 

  • Zheng T Y, Zhao L, Zhu R X. 2009. New evidence from seismic imaging for subduction during assembly of the North China craton. Geology, 37: 395–398

    Article  Google Scholar 

  • Zheng T Y, Zhu R X, Zhao L, Ai Y S. 2012. Intralithospheric mantle structures recorded continental subduction. J Geophys Res, 117: B03308

    Google Scholar 

  • Zheng T Y, He Y M, Yang J H, Zhao L. 2015. Seismological constraints on the crustal structures generated by continental rejuvenation in northeastern China. Sci Rep, 5: 14995

    Article  Google Scholar 

  • Zheng X F, Yao Z X, Liang J H, Zheng J. 2010. The role played and opportunities provided by IGP DMC of China National Seismic Network in Wenchuan earthquake disaster relief and researches. Bull Seismol Soc Am, 100: 2866–2872

    Article  Google Scholar 

  • Zheng Y F, Chen R X, Xu Z, Zhang S B. 2016. The transport of water in subduction zones. Sci China Earth Sci, 59: 651–682

    Article  Google Scholar 

  • Zheng Y F, Wu F Y. 2009. Growth and reworking of cratonic lithosphere. Chin Sci Bull, 54: 3347–3353

    Google Scholar 

  • Zhu G, Jiang D, Zhang B, Chen Y. 2012. Destruction of the eastern North China Craton in a backarc setting: Evidence from crustal deformation kinematics. Gondwana Res, 22: 86–103

    Article  Google Scholar 

  • Zhu R X, Xu Y G, Zhu G, Zhang H F, Xia Q K, Zheng T Y. 2012. Destruction of the North China Craton. Sci China Earth Sci, 55: 1565–1587

    Article  Google Scholar 

  • Zhu R X, Fan H R, Li J W, Meng Q R, Li S R, Zeng Q D. 2015. Decratonic gold deposits. Sci China Earth Sci, 58: 1523–1537

    Article  Google Scholar 

  • Zhu R X, Zheng T Y. 2009. Destruction geodynamics of the North China craton and its Paleoproterozoic plate tectonics. Chin Sci Bull, 54: 3354–3366

    Google Scholar 

Download references

Acknowledgements

We deeply appreciate the constructive comments from three anonymous reviewers and editor-in-chief Dr. Yongfei Zheng, that significantly improved the quality of this paper. This research was supported by the National Natural Science Foundation of China (Grant Nos. 91414301 & 41604081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Zhao, L., Xu, X. et al. Heterogeneous destruction of the North China Craton: Coupled constraints from seismology and geodynamic numerical modeling. Sci. China Earth Sci. 61, 515–526 (2018). https://doi.org/10.1007/s11430-017-9142-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9142-1

Keywords

Navigation