Skip to main content
Log in

Light carbon isotope events of foraminifera attributed to methane release from gas hydrates on the continental slope, northeastern South China Sea

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

In 2013, the China Geological Survey and Guangzhou Marine Geological Survey conducted the second Chinese gas hydrate expedition in the northern South China Sea (SCS) and successfully obtained visible gas hydrate samples. Five of the thirteen drilling sites were cored for further research. In this work, Site GMGS2-08 is selected for the stable isotopic analysis of foraminifera present in the boreholes in order to reveal the carbon isotopic characteristics of the foraminifera and their response to methane release in the gas hydrate geological system. Our results show that the methane content at Site GMGS2-08 is extremely high, with headspace methane concentrations up to 39300 μmol L−1. The hydrocarbon δ 13C values, ranging from −69.4‰ to −72.3‰ PDB, distinctly indicate biogenic generation. Based on the δD analytical results (−183‰ to −185‰ SMOW), headspace methane is further discriminated to be microbial gas, derived from CO2 reduction. By isotopic measurement, five light δ 13C events are found in the boreholes from Site GMGS2-08, with foraminiferal δ 13C values being apparently lower than the normal variation range found in the glacial-interglacial cycles of the SCS. The δ 13C values of benthic Uvigerina peregrina are extremely depleted (as low as −15.85‰ PDB), while those of planktonic Globigerinoides ruber reach −5.68‰ PDB. Scanning electron micrograph (SEM) studies show that foraminiferal tests have experienced post-depositional alteration, infilled with authigenic carbonate, and the diagenetic mineralization is unlikely to be related to the burial depths. The correlation calculation suggests that the anaerobic oxidation of organic matter has only weak influences on the δ 13C composition of benthic foraminifera. This means that the anomalous δ 13C depletions are predominantly attributed to the overprinting of secondary carbonates derived from the anaerobic oxidation of methane (AOM). Furthermore, the negative δ 13C anomalies, coupled with the positive δ 18O anomalies observed at Site GMGS2-08, are most likely the critical pieces of evidence for gas hydrate dissociation in the geological history of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borowski W S, Paull C K, Ussler III W. 1999. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Mar Geol, 159: 131–154

    Article  Google Scholar 

  • Bühring C, Sarnthein M, Erlenkeuser H. 2004. Toward a high-resolution stable isotope stratigraphy of the last 1.1 million years: Site 1144, South China Sea. In: Prell W L, Wang P, Blum P, Rea D K, Clemens S C, eds. Proceedings of the Ocean Drilling Program, Scientific Results, Volume 184. College Station, Texas, Ocean Drilling Program. 29

    Google Scholar 

  • Cao C, Lei H Y, Guan B C, Liu H R, Wu L F. 2010. Carbon and nitrogen concentration and stable isotopic composition of sediments from Dongsha area to indicator of methane-rich environment (in Chinese). J Xiamen Univ, 49: 838–844

    Google Scholar 

  • Cao C, Lei H Y. 2012. Respondence between carbon and oxygen isotopic characteristics of foraminifera from the northern South China Sea and late Quaternary hydrate released (in Chinese). J Jilin Univ, 42(Suppl): 162–171

    Google Scholar 

  • Chen D F, Huang Y Y, Yuan X L, Cathles III L M. 2005. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea. Mar Petrol Geol, 22: 613–621

    Article  Google Scholar 

  • Chen F, Zhuang C, Zhang G X, Lu H F, Duan X, Zhou Y, Su X, Wu C, Liu G H. 2014. Abnormal sedimentary events and gas hydrate dissociation in Dongsha area of the South China Sea during Last Glacial period (in Chinese). Earth Sci, 39: 1517–1526

    Google Scholar 

  • Chen M, Huang C, Wei K. 1997. 25000-year late Quaternary records of carbonate preservation in the South China Sea. Paleogeogr Paleoclimatol Paleoecol, 129: 155–169

    Article  Google Scholar 

  • Chen Y, Ussler III W, Haflidason H, Lepland A, Rise L, Hovland M, Hjelstuen B O. 2010. Sources of methane inferred from pore-water δ 13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway. Chem Geol, 275: 127–138

    Article  Google Scholar 

  • Cook M S, Keigwin L D, Birgel D, Hinrichs K. 2011. Repeated pulses of vertical methane flux recorded in glacial sediments from the southeast Bering Sea. Paleoceanography, 26: PA2210

    Article  Google Scholar 

  • Gong Y H, Wu S G, Zhang G X, Wang H B, Liang J Q, Guo Y Q, Sha Z B. 2008. Relation between gas hydrate and geologic structures in Dongsha Islands sea area of South China Sea (in Chinese). Mar Geol Quat Geol, 28: 99–104

    Google Scholar 

  • Guo Y Q, Li G J, Qiao S H, Zhuang X G. 2010. Simulation of reservoir dynamic of gas hydrate of Dongsha area of South China Sea (in Chinese). Geoscience, 24: 457–462

    Google Scholar 

  • Han X, Suess E, Huang Y, Wu N, Bohrmann G, Su X, Eisenhauer A, Rehder G, Fang Y. 2008. Jiulong methane reef: Microbial mediation of seep carbonates in the South China Sea. Mar Geol, 249: 243–256

    Article  Google Scholar 

  • Han X Q, Yang K H, Huang Y Y. 2013. Origin and nature of cold seep in northeastern Dongsha area, the South China Sea: Evidence from chimney- like seep carbonates. Chin Sci Bull, 58: 3689–3697

    Article  Google Scholar 

  • Hesselbo S P, Gröcke D R, Jenkyns H C, Bjerrum C J, Farrimond P, Bell H S M, Green O R. 2000. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 406: 392–395

    Article  Google Scholar 

  • Hill T M, Kennett J P, Valentine D L. 2004. Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific. Geochim Cosmochim Acta, 68: 4619–4627

    Article  Google Scholar 

  • Hill T M, Paull C K, Crister R B. 2012. Glacial and deglacial seafloor methane emissions from pockmarks on the northern flank of the Storegga Slide complex. Geo-Mar Lett, 32: 73–84

    Article  Google Scholar 

  • Huang X, Zhu Y H, Lu Z Q, Wang P K. 2010. Study on genetic types of hydrocarbon gases from the gas hydrate drilling area, the northern South China Sea (in Chinese). Geoscience, 24: 577–580

    Google Scholar 

  • Jahren A H, Arens N C, Sarmiento G, Guerrero J, Amundson R. 2001. Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology, 29: 159–162

    Article  Google Scholar 

  • Judd A, Hovland M. 2007. Seabed Fluid Flow: The Impact on Geology, Biology and the Marine Environment. Cambridge: Cambridge University Press. 475

    Book  Google Scholar 

  • Katz M E, Pak D K, Dickens G R, Miller K G. 1999. The source and fate of massive carbon input during the Latest Paleocene Thermal Maximum. Science, 286: 1531–1533

    Article  Google Scholar 

  • Keigwin L D. 2002. Late Pleistocene-Holocene paleoceanography and ventilation of the Gulf of California. J Oceanogr, 58: 421–432

    Article  Google Scholar 

  • Kennedy M J, Mrofka D D, von der Borch C. 2008. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature, 453: 642–645

    Article  Google Scholar 

  • Kennett J P, Cannariato K G, Hendy I L, Behl R J. 2000. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science, 288: 128–132

    Article  Google Scholar 

  • Kvenvolden K A. 1993. Gas hydrate-geological perspective and global change. Rev Geophys, 31: 173–187

    Article  Google Scholar 

  • Li B, Jian Z, Li Q, Tian J, Wang P. 2005. Paleoceanography of the South China Sea since the middle Miocene: Evidence from planktonic foraminifera. Mar Micropaleontol, 54: 49–62

    Article  Google Scholar 

  • Li L, Lei X, Zhang X, Sha Z. 2013. Gas hydrate and associated free gas in the Dongsha Area of northern South China Sea. Mar Petrol Geol, 39: 92–101

    Article  Google Scholar 

  • Lin C, Lin A T, Liu C, Chen G, Liao W. 2009. Geological controls on BSR occurrences in the incipient arc-continent collision zone off southwest Taiwan. Mar Petrol Geol, 26: 1118–1131

    Article  Google Scholar 

  • Lu H F, Liu J, Chen F, Cheng S H, Liao Z L. 2012. Shallow sulfate- methane interface in northeastern South China Sea: An indicator of strong methane seepage on seafloor (in Chinese). Mar Geol Quat Geol, 32: 93–98

    Article  Google Scholar 

  • Lu M A, Ma Z J, Chen M H, Sui S Z. 2002. Rapid carbon-isotope negative excursion events during the penultimate deglaciation in western Pacific marginal sea areas and their origins (in Chinese). Quat Sci, 22: 349–358

    Google Scholar 

  • Mackensen A, Wollenburg J, Licari L. 2006. Low δ 13C in tests of live epibenthic and endobenthic foraminifera at a site of active methane seepage. Paleoceanography, 21: PA2022

    Article  Google Scholar 

  • Martin J B, Day S A, Rathburn A E, Perez M E, Mahn C, Gieskes J. 2004. Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey Bay, California. Geochem Geophys Geosyst, 5: Q04004

    Article  Google Scholar 

  • Matsumoto R, Uchida T, Waseda A, Uchida T, Takeya S, Hirano T, Yamada K, Maeda Y, Okui T. 2000. Occurrence, structure and composition of natural gas hydrate recovered from the Blake Ridge, Northwest Atlantic. In: Paull C K, Matsumoto R, Wallace P J, Dillon W P, eds. Proceedings of the Ocean Drilling Program, Scientific Results, Volume 164. College Station, Texas, Ocean Drilling Program. 13–28

    Google Scholar 

  • Millo C, Sarnthein M, Erlenkeuser H, Frederichs H. 2005a. Methane- driven late Pleistocene δ 13C minima and overflow reversals in the southwestern Greenland Sea. Geology, 33: 873–876

    Article  Google Scholar 

  • Millo C, Sarnthein M, Erlenkeuser H, Grootes P M, Andersen N. 2005b. Methane-induced early diagenesis of foraminiferal tests in the southwestern Greenland Sea. Mar Micropaleontol, 58: 1–12

    Article  Google Scholar 

  • Ohkushi K, Ahagon N, Uchida M, Shibata Y. 2005. Foraminiferal isotope anomalies from northwestern Pacific marginal sediments. Geochem Geophys Geosyst, 6: Q04005

    Article  Google Scholar 

  • Padden M, Weissert H, de Rafelis M. 2001. Evidence for late Jurassic release of methane from gas hydrate. Geology, 29: 223–226

    Article  Google Scholar 

  • Panieri G, James R H, Camerlenghi A, Westbrook G K, Consolaro C, Cacho I, Cesari V, Cervera C S. 2014. Record of methane emissions from the West Svalbard continental margin during the last 23500 yrs revealed by δ 13C of benthic foraminifera. Glob Planet Change, 122: 151–160

    Article  Google Scholar 

  • Paull C K, Ussler III W, Peltzer E T, Brewer P G, Keaten R, Mitts P J, Nealon J W, Greinert J, Herguera J, Perez M E. 2007. Authigenic carbon entombed in methane-soaked sediments from the northeastern transform margin of the Guaymas Basin, Gulf of California. Deep-Sea Res Part II-Top Stud Oceanogr, 54: 1240–1267

    Article  Google Scholar 

  • Peckmann J, Thiel V. 2004. Carbon cycling at ancient methane-seeps. Chem Geol, 205: 443–467

    Article  Google Scholar 

  • Rathburn A E, Levin L A, Held Z, Lohmann K C. 2000. Benthic foraminifera associated with cold methane seeps on the northern California margin: Ecology and stable isotopic composition. Mar Micropaleontol, 38: 247–266

    Article  Google Scholar 

  • Sarnthein M, Tiedemann R. 1990. Younger Dryas-style cooling events at glacial terminations I-VI at ODP Site 658: Associated benthic δ 13C anomalies constrain meltwater hypothesis. Paleoceanography, 5: 1041–1055

    Article  Google Scholar 

  • Sen Gupta B K, Platon E, Bernhard J M, Aharon P. 1997. Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment, Gulf of Mexico slope. J Foraminifer Res, 27: 292–300

    Article  Google Scholar 

  • Shackleton N J, Hall M A, Pate D. 1995. Pliocene stable isotope stratigraphy of Site 846. In: Pisias N G, Mayer L A, Janecek T R, Palmer-Julson A, van Andel T H, eds. Proceedings of the Ocean Drilling Program, Scientific Results, Volume 138. College Station, Texas, Ocean Drilling Program. 337–355

    Google Scholar 

  • Shipboard Scientific Party. 2000. Leg 184 Summary: Exploring the Asian monsoon through drilling in the South China Sea. Proceedings of the Ocean Drilling Program, Initial Reports, Volume 184. College Station, Texas, Ocean Drilling Program. 77

    Google Scholar 

  • Smith L M, Sachs J P, Jennings A E, Anderson D M, de Vernal A. 2001. Light δ 13C events during deglaciation of the East Greenland continental shelf attributed to methane release from gas hydrates. Geophys Res Lett, 28: 2217–2220

    Article  Google Scholar 

  • Stott L D, Bunn T, Prokopenko M, Mahn C, Gieskes J, Bernhard J M. 2002. Does the oxidation of methane leave an isotopic fingerprint in the geologic record? Geochem Geophys Geosyst, 3, doi: 10.1029/2001GC000196

    Google Scholar 

  • Torres M E, Mix A C, Kinports K, Haley B, Klinkhammer G P, McManus J, de Angelis M A. 2003. Is methane venting at the seafloor recorded by δ 13C of benthic foraminifera shells? Paleoceanography, 18: 1062

    Article  Google Scholar 

  • Torres M E, Martin R A, Klinkhammer G P, Nesbitt E A. 2010. Post depositional alteration of foraminiferal shells in cold seep settings: New insights from flow-through time-resolved analyses of biogenic and inorganic seep carbonates. Earth Planet Sci Lett, 299: 10–22

    Article  Google Scholar 

  • Uchida M, Ohkushi K, Kimoto K, Inagaki F, Ishimura T, Tsunogai U, TuZino T, Shibata Y. 2008. Radiocarbon-based carbon source quantification of anomalous isotopic foraminifera in last glacial sediments in the western North Pacific. Geochem Geophys Geosyst, 9: Q04N14

    Article  Google Scholar 

  • Wang J Q, Zhu Y H, Wu B H, Fang N Q. 2005. Geochemistry of hydrocarbon gases from Site 1146, ODP Leg 184, the South China Sea and the implications (in Chinese). Mar Geol Quat Geol, 25: 53–60

    Google Scholar 

  • Wang S H, Yan B, Yan W. 2013. Tracing seafloor methane emissions with benthic foraminifera in the Baiyun Sag of the northern South China Sea. Environ Earth Sci, 70: 1143–1150

    Article  Google Scholar 

  • Wasada A, Uchida T. 2002. Origin of methane in natural gas hydrates from the Mackenzie Delta and Nankai Trough. Proceedings of the Fourth International Conference on Gas Hydrates. 169–174

    Google Scholar 

  • Wefer G, Heinze P M, Berger W H. 1994. Clues to ancient methane release. Nature, 369: 282

    Article  Google Scholar 

  • Wei G, Huang C, Wang C, Lee M, Wei K. 2006. High-resolution benthic foraminifer δ 13C records in the South China Sea during the last 150 ka. Mar Geol, 232: 227–235

    Article  Google Scholar 

  • Wiedicke M, Weiss W. 2006. Stable carbon isotope records of carbonates tracing fossil seep activity off Indonesia. Geochem Geophys Geosyst, 7: Q11009

    Article  Google Scholar 

  • Wu D D, Wu N Y, Zhang M, Guan H X, Fu S Y, Yang R. 2013. Relationship of Sulfate-Methane Interface (SMI), methane flux and the underlying gas hydrate in Dongsha area, northern South China Sea (in Chinese). Earth Sci, 38: 1309–1320

    Google Scholar 

  • Wu Y H, Shi X F, Zou J J, Cheng Z B, Wang K S, Ge S L, Shi F D. 2014. Benthic foraminiferal δ 13C minimum events in the southeastern Okhotsk Sea over the last 180 ka. Chin Sci Bull, 59: 3066–3074

    Article  Google Scholar 

  • Xiang R, Liu F, Chen Z, Yan W, Chen M H. 2010. Recent progress in cold seep benthic foraminifera (in Chinese). Adv Earth Sci, 25: 193–202

    Google Scholar 

  • Xiang R, Fang L, Chen Z, Zhang L L, Du S H, Yan W, Chen M H. 2012. Carbon isotope of benthic foraminifera and its implications for cold seepage in the southwestern area off Dongsha islands, South China Sea (in Chinese). Mar Geol Quat Geol, 32: 17–24

    Article  Google Scholar 

  • Yang T, Jiang S Y, Ge L, Yang J H, Wu N Y, Zhang G X, Liu J, Chen D H. 2013. Geochemistry of pore waters from HQ-1PC of the Qiongdongnan Basin, northern South China Sea, and its implications for gas hydrate exploration. Sci China Earth Sci, 56: 521–529

    Article  Google Scholar 

  • Yao B C. 2007. The forming condition and distribution characteristics of the gas hydrate in the South China Sea (in Chinese). Offsh Oil, 27: 1–10

    Google Scholar 

  • Zhang G X, Liang J Q, Lu J A, Yang S X, Zhang M, Su X, Xu H N, Fu S Y, Kuang Z G. 2014. Characteristics of natural gas hydrate reservoirs on the northeastern slope of the South China Sea (in Chinese). Nat Gas Ind, 34: 1–10

    Google Scholar 

  • Zhang G, Liang J, Lu J, Yang S, Zhang M, Holland M, Schultheiss P, Su X, Sha Z, Xu H, Gong Y, Fu S, Wang L, Kuang Z. 2015. Geological features, controlling factors and potential prospects of the gas hydrate occurrence in the east part of the Pearl River Mouth Basin, South China Sea. Mar Petrol Geol, 67: 356–367

    Article  Google Scholar 

  • Zhuang C, Chen F, Cheng S H, Lu H F, Zhou Y, Liu G H. 2015. Stable isotopic characteristics and their influencing factors of benthic foraminifera in the prospective gas hydrate area from the northern South China Sea since the Last Glacial (in Chinese). Quat Sci, 35: 422–432

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, C., Chen, F., Cheng, S. et al. Light carbon isotope events of foraminifera attributed to methane release from gas hydrates on the continental slope, northeastern South China Sea. Sci. China Earth Sci. 59, 1981–1995 (2016). https://doi.org/10.1007/s11430-016-5323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5323-7

Keywords

Navigation