Skip to main content
Log in

Benthic foraminiferal δ 13C minimum events in the southeastern Okhotsk Sea over the last 180 ka

  • Article
  • Oceanology
  • Published:
Chinese Science Bulletin

Abstract

A total of six δ 13C minimum events, i.e., VI, V, IV, III, II, and I, were observed via a stable carbon and oxygen isotope analysis of infaunal benthic foraminifera Uvigerina spp. in gravity core OS03-1 in the southeastern Okhotsk Sea over the last 180 ka. These events occurred at 112–109, 102–90, 85–76, 57–54, 44–40, and 17–10 ka BP. The largest negative excursions reached 2.5 ‰ in event V and were greater than 1 ‰ in the other events. We proposed that all δ 13C minimum events were caused by the increase in sea surface water productivity, the weakened formation of Okhotsk Sea intermediate water, and the enhancement of the oxygen minimum zone. The negative excursions were unaffected by methane hydrate destabilization and subsequent methane release based on the results obtained by using archaeal lipid markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kroopnick PM (1985) The distribution of 13C of ∑CO2 in the world oceans. Deep-Sea Res 32:57–84

    Article  Google Scholar 

  2. Duplessy J-C, Shackleton NJ, Matthews RK et al (1984) 13C record of benthic foraminifera in the last interglacial ocean: implications for the carbon cycle and the global deep water circulation. Quat Res 21:225–243

    Article  Google Scholar 

  3. Curry WB, Duplessy JC, Labeyrie LD et al (1988) Changes in the distribution of δ 13C of deep water ∑CO2 between the last glaciations and the Holocene. Paleoceanography 3:317–341

    Article  Google Scholar 

  4. Sarnthein M, Winn K, Jung SJA et al (1994) Changes in east Atlantic deep water circulation over the last 30,000 years: eight time slice reconstructions. Paleoceanography 9:209–267

    Article  Google Scholar 

  5. Keigwin LD (1998) Glacial-age hydrography of the far northwest Pacific Ocean. Paleoceanography 13:323–339

    Article  Google Scholar 

  6. Curry WB, Oppo DW (2005) Glacial water mass geometry and the distribution of δ13C of ∑CO2 in the western Atlantic Ocean. Paleoceanography 20:PA1017. doi:10.1029/2004PA001021

    Article  Google Scholar 

  7. Grossman EL (1984) Stable isotope fractionation in live benthic foraminifera from the Southern California Borderland. Palaeogeogr Palaeoclimatol Palaeoecol 47:301–327

    Article  Google Scholar 

  8. Berelson WM, Stott LD (2003) Productivity and organic carbon rain to the California margin seafloor: modern and paleoceanographic perspectives. Paleoceanography 18:1002. doi:10.1029/2001PA000672

    Article  Google Scholar 

  9. Zahn R, Winn K, Sarnthein M (1986) Benthic foraminiferal δ 13C and accumulation rates of organic carbon: Uvigerina peregrine group and Cibicidoides wuellerstorfi. Paleoceanography 1:27–42

    Article  Google Scholar 

  10. Shackleton NJ (1977) Carbon-13 in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution cycles. In: Andersen NR, Malahoff A (eds) The fate of fossil fuel CO2 in the oceans. Plenum Publish Corporation, New York, pp 401–427

    Chapter  Google Scholar 

  11. Dickens GR, James RO, Rea DK et al (1995) Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10:965–971

    Article  Google Scholar 

  12. Kennett JP, Cannariato KG, Hendy IL et al (2000) Carbon isotopic evidence for methane hydrate instability during quaternary interstadials. Science 288:128–133

    Article  Google Scholar 

  13. Katz ME, Cramer BS, Mountain GS et al (2001) Uncorking the bottle: what triggered the Paleocene/Eocene thermal maximum methane release? Paleoceanography 16:549–562

    Article  Google Scholar 

  14. Millo C, Sarnthein M, Erlenkeuser H et al (2005) Methane-driven late Pleistocene δ 13C minima and overflow reversals in the southwestern Greenland Sea. Geology 30:873–876. doi:10.1130/G21790.1

    Article  Google Scholar 

  15. Chen F, Su X, Lu H et al (2007) Carbon stable isotopic composition of benthic foraminifers from the north of the South China Sea: indicator of methane-rich environment. Mar Geol Quat Geol 27:1–7 (in Chinese)

    Google Scholar 

  16. Hill TM, Paull CK, Crister RB (2012) Glacial and deglacial seafloor methane emissions from pockmarks on the northern flank of the Storegga Slide complex. Geo-Mar Lett. doi:10.1007/s00367-011-0258-7

    Google Scholar 

  17. Nürnberg D, Tiedemann R (2004) Environmental change in the Sea of Okhotsk during the last 1.1 million years. Paleoceanography 19:PA4011. doi:10.1029/2004PA001023

    Article  Google Scholar 

  18. Shi X, Zou J, Wang K (2011) Paleoenvironmental changes in the Okhotsk Sea since late Pleistocene and its driving force. Mar Geol Quat Geol 6:1–12 (in Chinese)

    Google Scholar 

  19. Gladyshev S, Talley L, Kantakov G et al (2003) Distribution, formation, and seasonal variability of Okhotsk Sea Mode Water. J Geophys Res 108:3186. doi:10.1029/2001JC000877

    Article  Google Scholar 

  20. Wong CS, Matear RJ, Freeland HJ et al (1998) WOCE line P1 W in the Sea of Okhotsk: 2. CFCs and the formation rate of intermediate water. J Geophys Res 103:15625–15642

    Article  Google Scholar 

  21. Talley LD (1991) An Okhotsk Sea water anomaly: implication for ventilation in the North Pacific. Deep-Sea Res 38:171–190

    Article  Google Scholar 

  22. Freeland HJ, Bychkov AS, Whitney F et al (1998) WOCE section P1 W in the Sea of Okhotsk: 1. Oceanographic data description. J Geophys Res 103:15613–15623

    Article  Google Scholar 

  23. You Y, Suginohara N, Fukasawa M et al (2000) Roles of the Okhotsk Sea and Gulf of Alaska in forming the North Pacific Intermediate Water. J Geophys Res 105:3253–3280

    Article  Google Scholar 

  24. Itaki T, Ikehara K (2004) Middle to late Holocene changes of the Okhotsk Sea intermediate water and their relation to atmospheric circulation. Geophys Res Lett 31:L24309. doi:10.1029/2004GL021384

    Article  Google Scholar 

  25. Okazaki Y, Seki O, Nakatsuka T et al (2006) Cycladophora davisiana (Radiolaria) in the Okhotsk Sea: a key for reconstructing glacial ocean conditions. J Oceanogr 62:639–648

    Article  Google Scholar 

  26. Wang R, Chen R (2005) Cycladophora davisiana (Radiolarian) in the Bering Sea during the late Quaternary: a stratigraphic tool and proxy of the glacial Subarctic Pacific Intermediate Water. Sci China Ser D: Earth Sci 48:1698–1707

    Article  Google Scholar 

  27. Sun Y, Wang R, Chen J et al (2009) Late Quaternary paleoceanographic records in the southern Okhotsk Sea. Mar Geol Quat Geol 29:83–90 (in Chinese)

    Google Scholar 

  28. Okazaki Y, Takahashi K, Nakatsuka T et al (2003) The production scheme of Cycladophora davisiana (Radiolaria) in the Okhotsk Sea and the northwestern North Pacific: implication for the paleoceanographic conditions during the glacials in the high latitude oceans. Geophys Res Lett 30:1939. doi:10.1029/2003GL018070

    Article  Google Scholar 

  29. Abelmann A, Nimmergut A (2005) Radiolarians in the Sea of Okhotsk and their ecological implication for paleoenvironmental reconstructions. Deep-Sea Res 52:2302–2331

    Article  Google Scholar 

  30. Itaki T, Khim BK, Ikehara K (2008) Last glacial-Holocene water structure in the southwestern Okhotsk Sea inferred from radiolarian assemblages. Mar Micropaleontol 67:191–215

    Article  Google Scholar 

  31. Broerse ATC, Ziveri P, Honjo S (2000) Coccolithophore (−CaCO3) flux in the Sea of Okhotsk: seasonality, settling and alteration processes. Mar Micropaleontol 39:179–200

    Article  Google Scholar 

  32. Sakamoto T, Ikehara M, Aoki K et al (2005) Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100 kyrs in the Okhotsk Sea. Deep-Sea Res II 52:2275–2301

    Article  Google Scholar 

  33. Ge H, Zhang CL, Dang H et al (2013) Distribution of tetraether lipids in surface sediments of the northern South China Sea: Implications for TEX86 proxies. Geosci Front 4:223–229

    Article  Google Scholar 

  34. Fairbanks RG, Mortlock RA, Chiu T-C et al (2005) Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quat Sci Rev 24:1781–1796

    Article  Google Scholar 

  35. Martinson DG, Pisias NG, Hays JD et al (1987) Age dating and the orbital theory of the ice ages: development of a high-resolution 0–300,000-year chronostratigraphy. Quat Res 27:1–29

    Article  Google Scholar 

  36. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20:PA1003. doi:10.1029/2004PA001071

  37. Zhang YG, Zhang CL, Liu X-L et al (2011) Methane Index: a tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth Planet Sci Lett 307:525–534

    Article  Google Scholar 

  38. Duplessy JC, Shackleton NJ, Fairbanks RG et al (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3:343–360

    Article  Google Scholar 

  39. Hill TM, Kennett JP, Valentine DL (2004) Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific. Geochim Cosmochim Acta 68:4619–4627

    Article  Google Scholar 

  40. Cook MS, Keigwin LD, Birgel D et al (2011) Repeated pulses of vertical methane flux recorded in glacial sediments from the southeast Bering Sea. Paleoceanography 26:PA2210. doi:10.1029/2010PA001993

    Article  Google Scholar 

  41. Cannariato KG, Stott LD (2004) Evidence against clathrate-derived methane release to Santa Barbara Basin surface waters? Geochem Geophys Geosyst 5:Q05007. doi:10.1029/2003GC000600

    Article  Google Scholar 

  42. Xiang R, Liu F, Chen Z et al (2010) Recent progress in cold seep benthic foraminifer. ADEARTH 25:193–202 (in Chinese)

    Google Scholar 

  43. Pancost RD, Hopmans EC, Sinnighe DJS et al (2001) Archaeal lipids in Mediterranean cold seeps: molecular proxies for anaerobic methane oxidation. Geochim Cosmochim Acta 65:1611–1627

    Article  Google Scholar 

  44. Blumenberg M, Seifert R, Reitner J et al (2004) Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proc Natl Acad Sci USA 101:11111–11116

    Article  Google Scholar 

  45. Mackensen A, Hubberten HW, Bickert T et al (1993) The δ 13C in benthic foraminiferal tests of Fontbotia wuellerstorfi (Schwager) relative to the δ 13C of dissolved inorganic carbon in Southern Ocean Deep Water: implications for glacial ocean circulation models. Paleoceanography 8:587–610. doi:10.1029/93PA01291

    Article  Google Scholar 

  46. Mackensen A, Bickert T (1999) Stable carbon isotopes in benthic foraminifera: proxy for deep and bottom water circulation and new production. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples from the South Atlantic. Springer, Berlin, pp 229–254

    Chapter  Google Scholar 

  47. Zarriess M, Mackensen A (2011) Testing the impact of seasonal phytodetritus deposition on δ13C of epibenthic foraminifer Cibicidoides wuellerstorfi: a 31,000 year high-resolution record from the northwest African continental slope. Paleoceanography 26:PA2202. doi:10.1029/2010PA001944

    Article  Google Scholar 

  48. Cheng X, Wang P, Huang B et al (2005) Carbon isotopic record of foraminifers in surface sediments from the South China Sea and its significance. Chin Sci Bull 50:162–166

    Article  Google Scholar 

  49. Bubenshchikova N, Nürnberg D, Lembke-Jene L et al (2008) Living benthic foraminifera of the Okhotsk Sea: faunal composition, standing stocks and microhabitats. Mar Micropaleontol 69:314–333

    Article  Google Scholar 

  50. Gorbarenko SA, Southon JR, Keigwin LD (2004) Late Pleistocene-Holocene oceanographic variability in the Okhotsk Sea: geochemical, lithological and paleontological evidence. Palaeogeogr Palaeoclimatol Palaeoecol 209:281–301

    Article  Google Scholar 

  51. Li T, Liu Z, Hall MA et al (2002) A broad deglacial δ 13C minimum event in planktonic foraminiferal records in the Okinawa Trough. Chin Sci Bull 47:599–603

    Article  Google Scholar 

  52. Kitani K (1973) An oceanographic study of the Okhotsk Sea: particularly in regard to cold waters. Bull. Far Seas Fish Res Lab 9:45–77

    Google Scholar 

  53. Salyuk A, Sosnin V, Obzhirov A et al (2003) Water column studies. In: Biebow N, Kulinich R, Baranov B (eds) Cruise Reports: RV“Akademik M.A. Lavrentyev” Cruise 29. GEOMAR Reports 110, Bremerhaven, pp 110–112

    Google Scholar 

  54. Bubenshchikova NV, Nürnberg D, Gorbarenko SA et al (2010) Variations of the oxygen minimum zone of the Okhotsk Sea during the last 50 ka as indicated by benthic foraminiferal and biogeochemical data. Oceanology 50:93–106

    Article  Google Scholar 

  55. Shibahara A, Ohkushi K, Kennett JP et al (2007) Late Quaternary changes in intermediate water oxygenation and oxygen minimum zone, northern Japan: a benthic foraminiferal perspective. Paleoceanography 22:PA3213. doi:10.1029/2005PA001234

    Article  Google Scholar 

  56. Cannariato KG, Kennett JP, Behl RJ (1999) Biotic response to late Quaternary rapid climate switches in Santa Barbara Basin: ecological and evolutionary implications. Geology 27:63–66

    Article  Google Scholar 

  57. Cannariato KG, Kennett JP (1999) Climatically related millennial-scale fluctuations in strength of California margin oxygen-minimum zone during the past 60 ky. Geology 27:975–978

    Article  Google Scholar 

  58. McKay JL, Pedersen TF, Southon J (2005) Intensification of the oxygen minimum zone in the northeast Pacific off Vancouver Island during the last deglaciation: ventilation and/or export production? Paleoceanography 20:PA4002. doi:10.1029/2003PA000979

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2013CB429700), the Basic Scientific Fund for the National Public Research Institutes of China (2012G07, 2013G38), the National Natural Science Foundation of China (40431002, 4071006900 and 40906035), and the Youth Marine Science Foundation of the State Oceanic Administration (2013313). The authors appreciate the helpful suggestions of Prof. Jian Zhimin and are grateful to Prof. Cheng Xinrong for analyzing the foraminiferal stable isotopes, as well as to Prof. Zhang Chuanlun for his help in measuring the archaeal lipid biomarkers. We are also grateful to the National Ocean Science AMS Facility at the Woods Hole Oceanographic Institution for the radiocarbon dating and to Si Heyuan for selecting all the foraminiferal samples. Special thanks go to Dr. Christian Millo for his valuable suggestions when we were preparing the manuscript and to Dr. N V Bubenshchikova for her help in benthic foraminiferal identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghua Wu.

About this article

Cite this article

Wu, Y., Shi, X., Zou, J. et al. Benthic foraminiferal δ 13C minimum events in the southeastern Okhotsk Sea over the last 180 ka. Chin. Sci. Bull. 59, 3066–3074 (2014). https://doi.org/10.1007/s11434-014-0222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0222-9

Keywords

Navigation