Skip to main content
Log in

Pyrite morphology and episodic euxinia of the Ediacaran Doushantuo Formation in South China

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Ediacaran Doushantuo Formation with well-preserved fossil record in South China provides a rare window for our understanding of biological evolution, global carbon cycle, and oceanic redox states. Prominent negative δ13C anomalies (i.e., the Shuram excursion) in Ediacaran successions worldwide fundamentally challenge the traditional models of isotopic mass balance. Additionally, conflicting opinions of both oxic and anoxic conditions have been proposed for the deep waters during this period. Here, we present a detailed study of pyrite morphology and carbonate carbon isotope data documented from drill core samples at Songtao County, northeastern Guizhou. Framboid aggregates are the dominant pyrite form in black shale and they can transfer to euhedral crystals through continuous growth of the constituent microcrystals. A positive correlation between microcrystal sizes (d) and framboid diameters (D) is observed, while the different D/d ratios of framboids in argillaceous dolostone and black shale reflect different substrate availability. Electron microprobe analyses reveal no consistent compositional patterns between framboidal and euhedral pyrites. Framboid size distributions of the investigated drill core, in combination with previously published redox data from the intra-shelf Jiulongwan section, shelf margin Zhongling section, and lower slope Wuhe section, suggest that three episodes of marine euxinia have been established throughout the deposition of the Doushantuo Formation. The time lag between the uppermost euxinic interval and the Shuram excursion may arise from the depression of sulfate reduction maintained by other oxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An Z, Jiang G, Tong J, Tian L, Ye Q, Song H, Song H. 2015. Stratigraphic position of the Ediacaran Miaohe biota and its constrains on the age of the upper Doushantuo δ13C anomaly in the Yangtze Gorges area, South China. Precambrian Res, 271: 243-53

    Article  Google Scholar 

  • Anbar A D, Knoll A H. 2002. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 297: 1137-142

    Article  Google Scholar 

  • Arnold G L, Anbar A D, Barling J, Lyons T W. 2004. Molybdenum isotope evidence for widespread anoxia in Mid-Proterozoic Oceans. Science, 304: 87-0

    Article  Google Scholar 

  • Barnard A S, Russo S P. 2009. Morphological stability of pyrite FeS2 nanocrystals in water. J Phys Chem C, 113: 5376-380

    Article  Google Scholar 

  • Berner Z A, Puchelt H, Nöltner T, Kramar U. 2013. Pyrite geochemistry in the Toarcian Posidonia Shale of south-west Germany: Evidence for contrasting trace-element patterns of diagenetic and syngenetic pyrites. Sedimentology, 60: 548-73

    Article  Google Scholar 

  • Bond D P G, Wignall P B. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. Geol Soc Am Bull, 122: 1265-279

    Article  Google Scholar 

  • Bristow T F, Kennedy M J. 2008. Carbon isotope excursions and the oxidant budget of the Ediacaran atmosphere and ocean. Geology, 36: 863-66

    Article  Google Scholar 

  • Butler I B, Rickard D. 2000. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulphide. Geochim Cosmochim Acta, 64: 2665-672

    Article  Google Scholar 

  • Butterfield N J. 2007. Macroevolution and macroecology through deep time. Palaeontology, 50: 41-5

    Article  Google Scholar 

  • Calver C R. 2000. Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide rift complex, Australia, and the overprint of water column stratification. Precambrian Res, 100: 121-50

    Article  Google Scholar 

  • Canfield D E. 1998. A new model for Proterozoic ocean chemistry. Nature, 396: 450-53

    Article  Google Scholar 

  • Canfield D E, Poulton S W, Knoll A H, Narbonne G M, Ross G, Goldberg T, Strauss H. 2008. Ferruginous conditions dominated later neoproterozoic deep-water chemistry. Science, 321: 949-52

    Article  Google Scholar 

  • Cashman K V, Ferry J M. 1988. Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. Contrib Mineral Petrol, 99: 401-15

    Article  Google Scholar 

  • Cavalazzi B, Barbieri R, Cady S L, George A D, Gennaro S, Westall F, Lui A, Canteri R, Rossi A P, Ori G G, Taj-Eddine K. 2012. Iron-framboids in the hydrocarbon-related Middle Devonian Hollard Mound of the Anti-Atlas mountain range in Morocco: Evidence of potential microbial biosignatures. Sediment Geol, 263-264: 183-93

    Article  Google Scholar 

  • Chang H J, Chu X L, Feng L J, Huang J. 2012. Progressive oxidation of anoxic and ferruginous deep-water during deposition of the terminal Ediacaran Laobao Formation in South China. Paleogeogr Paleoclimatol Paleoecol, 321-322: 80-7

    Article  Google Scholar 

  • Chen Z, Zhou C, Meyer M, Xiang K, Schiffbauer J D, Yuan X, Xiao S. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Res, 224: 690-01

    Article  Google Scholar 

  • Chen Z, Zhou C, Xiao S, Wang W, Guan C, Hua H, Yuan X. 2014. New Ediacara fossils preserved in marine limestone and their ecological implications. Sci Rep, 4: 4180

    Google Scholar 

  • Condon D, Zhu M, Bowring S, Wang W, Yang A, Jin Y. 2005. U-Pb ages from the neoproterozoic doushantuo formation, China. Science, 308: 95-8

    Article  Google Scholar 

  • Cui H, Kaufman A J, Xiao S, Zhu M, Zhou C, Liu X M. 2015. Redox architecture of an Ediacaran ocean margin: Integrated chemostratigraphic (δ13C-δ34S-87Sr/86Sr-Ce/Ce*) correlation of the Doushantuo Formation, South China. Chem Geol, 405: 48-2

    Article  Google Scholar 

  • Cui H, Xiao S, Zhou C, Peng Y, Kaufman A J, Plummer R E. 2016. Phosphogenesis associated with the Shuram excursion: Petrographic and geochemical observations from the Ediacaran doushantuo formation of South China. Sediment Geol, 341: 134-46

    Article  Google Scholar 

  • Derry L A. 2010. A burial diagenesis origin for the Ediacaran Shuram-Wonoka carbon isotope anomaly. Earth Planet Sci Lett, 294: 152-62

    Article  Google Scholar 

  • Fike D A, Grotzinger J P, Pratt L M, Summons R E. 2006. Oxidation of the Ediacaran Ocean. Nature, 444: 744-47

    Article  Google Scholar 

  • Grotzinger J P, Fike D A, Fischer W W. 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nat Geosci, 4: 285-92

    Article  Google Scholar 

  • Guan C, Zhou C, Wang W, Wan B, Yuan X, Chen Z. 2014. Fluctuation of shelf basin redox conditions in the early Ediacaran: Evidence from Lantian Formation black shales in South China. Precambrian Res, 245: 1-2

    Article  Google Scholar 

  • Guo Q, Shields G A, Liu C, Strauss H, Zhu M, Pi D, Goldberg T, Yang X. 2007. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian. Paleogeogr Paleoclimatol Paleoecol, 254: 194-16

    Article  Google Scholar 

  • Holland H D. 2006. The oxygenation of the atmosphere and oceans. Philos Trans R Soc B-Biol Sci, 361: 903-15

    Article  Google Scholar 

  • Jiang G, Kaufman A J, Christie-Blick N, Zhang S, Wu H. 2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ13C gradient. Earth Planet Sci Lett, 261: 303-20

    Article  Google Scholar 

  • Jiang G, Shi X, Zhang S, Wang Y, Xiao S. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635-51Ma) in South China. Gondwana Res, 19: 831-49

    Article  Google Scholar 

  • Jiang G, Sohl L E, Christie-Blick N. 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): Paleogeographic implications. Geology, 31: 917-20

    Article  Google Scholar 

  • Jiang G Q, Zhang S H, Shi X Y, Wang X Q. 2008. Chemocline instability and isotope variations of the Ediacaran Doushantuo basin in South China. Sci China Ser D-Earth Sci, 51: 1560-569

    Article  Google Scholar 

  • Jin C, Li C, Algeo T J, Planavsky N J, Cui H, Yang X, Zhao Y, Zhang X, Xie S. 2016. A highly redox-heterogeneous ocean in South China during the early Cambrian (↿29-14 Ma): Implications for biota-environment co-evolution. Earth Planet Sci Lett, 441: 38-1

    Article  Google Scholar 

  • Kaufman A J, Corsetti F A, Varni M A. 2007. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA. Chem Geol, 237: 47-3

    Article  Google Scholar 

  • Kikumoto R, Tahata M, Nishizawa M, Sawaki Y, Maruyama S, Shu D, Han J, Komiya T, Takai K, Ueno Y. 2014. Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges, South China. Gondwana Res, 25: 1057-069

    Article  Google Scholar 

  • Knauth L P, Kennedy M J. 2009. The late Precambrian greening of the Earth. Nature, 460: 728-32

    Google Scholar 

  • Large R R, Halpin J A, Danyushevsky L V, Maslennikov V V, Bull S W, Long J A, Gregory D D, Lounejeva E, Lyons T W, Sack P J, McGoldrick P J, Calver C R. 2014. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth Planet Sci Lett, 389: 209-20

    Article  Google Scholar 

  • Le Guerroué E, Allen P A, Cozzi A, Etienne J L, Fanning M. 2006. 50 Myr recovery from the largest negative δ13C excursion in the Ediacaran ocean. Terra Nova, 18: 147-53

    Article  Google Scholar 

  • Li C, Love G D, Lyons T W, Fike D A, Sessions A L, Chu X. 2010. A stratified redox model for the Ediacaran Ocean. Science, 328: 80-3

    Article  Google Scholar 

  • Lyons T W, Anbar A D, Severmann S, Scott C, Gill B C. 2009. Tracking euxinia in the Ancient Ocean: A multiproxy perspective and proterozoic case study. Annu Rev Earth Planet Sci, 37: 507-34

    Article  Google Scholar 

  • McFadden K A, Huang J, Chu X, Jiang G, Kaufman A J, Zhou C, Yuan X, Xiao S. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Natl Acad Sci USA, 105: 3197-202

    Article  Google Scholar 

  • Meyer K M, Kump L R. 2008. Oceanic euxinia in Earth History: Causes and consequences. Annu Rev Earth Planet Sci, 36: 251-88

    Article  Google Scholar 

  • Meyer M, Xiao S, Gill B C, Schiffbauer J D, Chen Z, Zhou C, Yuan X. 2014. Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China. Paleogeogr Paleoclimatol Paleoecol, 396: 62-4

    Article  Google Scholar 

  • Narbonne G M, Gehling J G. 2003. Life after snowball: The oldest complex Ediacaran fossils. Geology, 31: 27-0

    Article  Google Scholar 

  • Nielsen J K, Shen Y. 2004. Evidence for sulfidic deep water during the Late Permian in the East Greenland Basin. Geology, 32: 1037

    Article  Google Scholar 

  • Och L M, Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Sci Rev, 110: 26-7

    Article  Google Scholar 

  • Ohfuji H, Rickard D. 2005. Experimental syntheses of framboids—A review. Earth-Sci Rev, 71: 147-70

    Article  Google Scholar 

  • Poulton S W, Canfield D E. 2011. Ferruginous conditions: A dominant feature of the Ocean through Earth’s History. Elements, 7: 107-12

    Article  Google Scholar 

  • Poulton S W, Raiswell R. 2002. The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition. Am J Sci, 302: 774-05

    Article  Google Scholar 

  • Raiswell R, Canfield D E. 1998. Sources of iron for pyrite formation in marine sediments. Am J Sci, 298: 219-45

    Article  Google Scholar 

  • Raiswell R, Newton R, Bottrell S H, Coburn P M, Briggs D E G, Bond D P G, Poulton S W. 2008. Turbidite depositional influences on the diagenesis of Beecher’s Trilobite Bed and the Hunsruck Slate sites of soft tissue pyritization. Am J Sci, 308: 105-29

    Article  Google Scholar 

  • Rothman D H, Hayes J M, Summons R E. 2003. Dynamics of the Neoproterozoic carbon cycle. Proc Natl Acad Sci USA, 100: 8124-129

    Article  Google Scholar 

  • Sahoo S K, Planavsky N J, Jiang G, Kendall B, Owens J D, Wang X, Shi X, Anbar A D, Lyons T W. 2016. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology, 14: 457-68

    Article  Google Scholar 

  • Sahoo S K, Planavsky N J, Kendall B, Wang X, Shi X, Scott C, Anbar A D, Lyons T W, Jiang G. 2012. Ocean oxygenation in the wake of the Marinoan glaciation. Nature, 489: 546-49

    Article  Google Scholar 

  • Sawaki Y, Ohno T, Tahata M, Komiya T, Hirata T, Maruyama S, Windley B F, Han J, Shu D, Li Y. 2010. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Formation in the Three Gorges area, South China. Precambrian Res, 176: 46-4

    Article  Google Scholar 

  • Scott C, Lyons T W, Bekker A, Shen Y, Poulton S W, Chu X, Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature, 452: 456-59

    Article  Google Scholar 

  • Shen Y, Knoll A H, Walter M R. 2003. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature, 423: 632-35

    Article  Google Scholar 

  • Vernhet E. 2007. Paleobathymetric influence on the development of the late Ediacaran Yangtze platform (Hubei, Hunan, and Guizhou provinces, China). Sediment Geol, 197: 29-6

    Article  Google Scholar 

  • Wacey D, Kilburn M R, Saunders M, Cliff J B, Kong C, Liu A G, Matthews J J, Brasier M D. 2015. Uncovering framboidal pyrite biogenicity using nano-scale CNorg mapping. Geology, 43: 27-0

    Article  Google Scholar 

  • Wang J, Li Z X. 2003. History of Neoproterozoic rift basins in South China: Implications for Rodinia break-up. Precambrian Res, 122: 141-58

    Article  Google Scholar 

  • Wang L, Shi X, Jiang G. 2012. Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation. Paleogeogr Paleoclimatol Paleoecol, 333-334: 218-27

    Article  Google Scholar 

  • Wang W, Zhou C, Guan C, Yuan X, Chen Z, Wan B. 2014. An integrated carbon, oxygen, and strontium isotopic studies of the Lantian Formation in South China with implications for the Shuram anomaly. Chem Geol, 373: 10-6

    Article  Google Scholar 

  • Wignall P B, Newton R. 1998. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. Am J Sci, 298: 537-52

    Article  Google Scholar 

  • Wilkin R T, Barnes H L. 1997. Formation processes of framboidal pyrite. Geochim Cosmochim Acta, 61: 323-39

    Article  Google Scholar 

  • Wilkin R T, Barnes H L, Brantley S L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim Cosmochim Acta, 60: 3897-912

    Article  Google Scholar 

  • Xiao S, Laflamme M. 2009. On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota. Trends Ecology Evolution, 24: 31-0

    Article  Google Scholar 

  • Xiao S, Shen B, Zhou C, Xie G, Yuan X. 2005. A uniquely preserved Ediacaran fossil with direct evidence for a quilted bodyplan. Proc Natl Acad Sci USA, 102: 10227-0232

    Article  Google Scholar 

  • Xiao S, Yuan X, Steiner M, Knoll A H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, south China. J Paleontol, 76: 347-76

    Article  Google Scholar 

  • Xiao S, Zhang Y, Knoll A H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391: 553-58

    Article  Google Scholar 

  • Yin L, Zhu M, Knoll A H, Yuan X, Zhang J, Hu J. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446: 661-63

    Article  Google Scholar 

  • Yuan X, Chen Z, Xiao S, Zhou C, Hua H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470: 390-93

    Article  Google Scholar 

  • Zhou C M, Jiang S Y, Xiao S H, Chen Z, Yuan X L. 2012. Rare earth elements and carbon isotope geochemistry of the Doushantuo Formation in South China: Implication for middle Ediacaran shallow marine redox conditions. Chin Sci Bull, 57: 1998-006

    Article  Google Scholar 

  • Zhou C, Xiao S. 2007. Ediacaran δ13C chemostratigraphy of South China. Chem Geol, 237: 89-08

    Article  Google Scholar 

  • Zhu M, Lu M, Zhang J, Zhao F, Li G, Aihua Y, Zhao X, Zhao M. 2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei, South China. Precambrian Res, 225: 7-8

    Article  Google Scholar 

  • Zhu M, Zhang J, Yang A. 2007. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Paleogeogr Paleoclimatol Paleoecol, 254: 7-1

    Article  Google Scholar 

Download references

Acknowledgments

We thank Wang Huajian, Fu Yong, Guo Zenghui, Yu Hao, Zhou Ming, Pei Haoxiang and Zhang Chenchen for helps in sample collection and discussion. We are also grateful to Chen Li and Wang Yizhe for their laboratory assistance. Constructive comments by two anonymous reviewers greatly improved the manuscript. This research was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20120001110052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChaoDong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Wu, C., Zhai, L. et al. Pyrite morphology and episodic euxinia of the Ediacaran Doushantuo Formation in South China. Sci. China Earth Sci. 60, 102–113 (2017). https://doi.org/10.1007/s11430-016-0066-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-0066-0

Keywords

Navigation