Skip to main content
Log in

Chemocline instability and isotope variations of the Ediacaran Doushantuo basin in South China

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

Stable isotope analyses in sections across a shelf to basinal transect of the Ediacaran Doushantuo basin show substantial isotope variabilities. In Songlin section where sediments were deposited in an intrashelf basin, δ 13C values are persistently negative (−3‰ to −5‰, VPDB) through the entire Doushantuo Formation, similar to those obtained from the slope section in Wuhe (−5‰ to −10‰, VPDB). Shallow water sections in Weng’an and Duoding show two broad δ 13C anomalies overprinted with significant meter-scale variations, but none of the curves has similar absolute δ 13C values compared to the Yangtze Gorges areas in South China and other sections globally. Such isotope variations, if partially recording ancient seawater signature, imply spatial and temporal chemocline instability in the Doushantuo basin. In combination with available δ 13C records from other Ediacaran successions globally, the data from the Doushantuo basin are consistent, in first order, with the existence and oxidation of a large dissolved organic carbon (DOC) reservoir in Ediacaran oceans, but imply local environmental controls on Neoproterozoic isotope values and call attentions for using δ 13C anomalies as time lines in stratigraphic correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calver C R. Isotope stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide rift complex, Australia, and the overprint of water column stratification. Precambrian Res, 2000, 100(1): 121–150

    Article  Google Scholar 

  2. Corsetti F A, Kaufman A J. Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice ages in Death Valley, California. Geol Soc Am Bull, 2003, 115(4): 916–932

    Article  Google Scholar 

  3. Halverson G P, Hoffman P F, Schrag D P, et al. Toward a Neoproterozoic composite carbon-isotope record. Geol Soc Am Bull, 2005, 117(9–10): 1181–1207

    Article  Google Scholar 

  4. Fike D A, Grotzinger J P, Pratt L M, et al. Oxidation of the Ediacaran Ocean. Nature, 2006, 444(7120): 744–747

    Article  Google Scholar 

  5. Kaufman A J, Jiang G Q, Christie-Blick N, et al. Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India. Precambrian Res, 2006, 147(1–2): 156–185

    Article  Google Scholar 

  6. Le Guerroue E, Allen P A, Cozzi A, et al. 50 Myr recovery from the largest negative δ 13C excursion in the Ediacaran ocean. Terra Nova, 2006, 18(2): 147–153

    Article  Google Scholar 

  7. Jiang G Q, Kaufman A J, Christie-Blick N, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep ocean δ 13C gradient. Earth Planet Sci Lett, 2007, 261(1–2): 303–320

    Article  Google Scholar 

  8. Zhu M Y, Zhang J M, Yang A H. Integrated Ediacaran (Sinian) chronostratigraphy of South China. Palaeogeogr Palaeoclim Palaeoecol, 2007, 254(1–2): 7–61

    Article  Google Scholar 

  9. McFadden K A, Huang J, Chu X L, et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc Nat Acad Sci USA, 2008, 105(9): 3197–3202

    Article  Google Scholar 

  10. Zhang S H, Jiang G Q, Zhang J M, et al. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 2005, 33(6): 473–476

    Article  Google Scholar 

  11. Bowring S A, Grotzinger J P, Condon D J, et al. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am J Sci, 2007, 307(10): 1097–1145

    Article  Google Scholar 

  12. Rothman D H, Hayes J M, Summons R E. Dynamics of the Neoproterozoic carbon cycle. Proc Nat Acad Sci USA, 2003, 100(14): 8124–8129

    Article  Google Scholar 

  13. Zhou C M, Xiao S H. Ediacaran δ 13C chemostratigraphy of South China. Chem Geol, 2007, 237(1–2): 89–108

    Article  Google Scholar 

  14. Ling H F, Feng H Z, Pan J Y, et al. Carbon isotope variation through the Neoproterozoic Doushantuo and Dengying Formations, South China: Implications for chemostratigraphy and paleoenvironmental change. Palaeogeogr Palaeoclim Palaeoecol, 2007, 254(1–2): 158–174

    Article  Google Scholar 

  15. Jiang G Q, Christie-Blick N, Kaufman A J, et al. Sequence stratigraphy of the Neoproterozoic Infra Krol Formation and Krol Group, Lesser Himalaya, India. J Sediment Res, 2002, 72(4): 524–542

    Article  Google Scholar 

  16. Kaufman A J, Corsetti F A, Varni M A. The effect of rising atmospheric oxygen on carbon and sulfur isotope anomalies in the Neoproterozoic Johnnie Formation, Death Valley, USA. Chem Geol, 2007, 237(1–2): 47–63

    Article  Google Scholar 

  17. Saylor B Z, Kaufman A J, Grotzinger J P, et al. A composite reference section for terminal Proterozoic strata of southern Namibia. J Sediment Res, 1998, 68(6): 1223–1235

    Google Scholar 

  18. Condon D, Zhu M Y, Bowring S, et al. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308(5718): 95–98

    Article  Google Scholar 

  19. Zhang S H, Jiang G Q, Han Y G. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 2008, 20(4): 289–294

    Article  Google Scholar 

  20. Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents; evidence for a mantle superplume that broke up Rodinia. Precambrian Res, 2003, 122(1–4): 85–109

    Article  Google Scholar 

  21. Jiang G Q, Sohl L E, Christie-Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze Block (South China): paleogeographic implications. Geology, 2003(10), 31: 917–920

    Article  Google Scholar 

  22. Liu B J, Xu X S, Pan X, et al. Paleocontinental Sediments, Crust Evolution and Ore Deposits of South China. Beijing: Science Press, 1993. 1–280

    Google Scholar 

  23. Vernhet E. Paleobathymetric influence on the development of the late Ediacaran Yangtze platform (Hubei, Hunan, and Guizhou provinces, China). Sediment Geol, 2007, 197(1–2): 29–46

    Article  Google Scholar 

  24. Jiang G Q, Christie-Blick N, Kaufman A J, et al. Carbonate platform growth and cyclicity at a terminal Proterozoic passive margin, Infra Krol Formation and Krol Group, Lesser Himalaya, India. Sedimentology, 2003, 50(5): 921–952

    Article  Google Scholar 

  25. Jiang G Q, Kennedy M J, Christie-Blick N, et al. Stratigraphy, Sedimentary Structures, and Textures of the Late Neoproterozoic Doushantuo Cap Carbonate in South China. J Sediment Res, 2006, 76(7–8): 978–995

    Article  Google Scholar 

  26. Jiang G Q, Shi X Y, Zhang S H. Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates. Chin Sci Bull, 2006, 51(10): 1152–1173

    Article  Google Scholar 

  27. Zhang Y, Yin L M, Xiao S H, et al. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. J Paleontol, 1998, 72(4): 1–52

    Google Scholar 

  28. Xiao S H, Zhang Y, Knoll A H. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 1998, 391(6667): 553–558

    Article  Google Scholar 

  29. Xiao S, Knoll A H, Yuan X, et al. Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. Am J Bot, 2004, 91(2): 214–227

    Article  Google Scholar 

  30. Chen J Y, Bottjer D J, Oliveri P, et al. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science, 2004, 305(5681): 218–222

    Article  Google Scholar 

  31. Zhou C M, Xie G W, McFadden K, et al. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and biostratigraphic significance. Geol J, 2007, 42(3–4): 229–262

    Google Scholar 

  32. Patterson W P, Walter L M. Depletion of 13C in seawater ΣCO2 on modern carbonate platforms: Significance for the carbon isotopic record of carbonates. Geology, 1994, 22(10): 885–888

    Article  Google Scholar 

  33. Walter L M, Ku T C W, Muehlenbachs K, et al. Controls on the δ 13C of dissolved inorganic carbon in marine pore waters: An integrated case study of isotope exchange during syndepositional recrystallization of biogenic carbonate sediments (South Florida Platform, USA). Deep-Sea Res II-Top Stud Oceanogr, 2007, 54(11–13): 1163–1200

    Article  Google Scholar 

  34. Panchuk K M, Holmden C E, Leslie S A. Local controls on carbon cycling in the Ordovician midcontinent region of North America, with implications for carbon isotope secular curves. J Sediment Res, 2006, 76(1–2): 200–211

    Article  Google Scholar 

  35. Chu X L, Zhang T G, Zhang Q R, et al. Carbon isotopic variations of Proterozoic carbonates in Jixian, Tianjin, China. Sci China Ser D-Earth Sci, 2004, 47(10): 160–170

    Article  Google Scholar 

  36. Zhu M Y, Zhang J M, Li G X, et al. Evolution of C isotopes in the Cambrian of China: Implications for Cambrian subdivision and trilobite mass extinctions. Geobios, 2004, 37(2): 287–301

    Article  Google Scholar 

  37. Brasier M D, Lindsay J F. A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia. Geology, 1998, 26(6): 555–558

    Article  Google Scholar 

  38. Saltzman M R. Phosphorus, nitrogen, and the redox evolution of the Paleozoic oceans. Geology, 2005, 33(7): 573–576

    Article  Google Scholar 

  39. Berner R A, Canfield D E. A new model for atmospheric oxygen over Phanerozoic time. Am J Sci, 1989, 289(4): 333–361

    Google Scholar 

  40. Kennedy M J, Droser M, Mayer L M, et al. Late Precambrian oxygenation: inception of the clay mineral factory. Science, 2006, 311(5766): 1446–1449

    Article  Google Scholar 

  41. Zhang R, Follows M J, Grotzinger J P, et al. Could the Late Permian deep ocean have been anoxic? Paleoceanography, 2001, 16(3): 317–329

    Article  Google Scholar 

  42. Knoll A H, Hayes J M, Kaufman A J, et al. Secular variation in carbon isotope ratios from upper Proterozoic successions of Svalbard and East Greenland. Nature, 1986, 321(6073): 832–838

    Article  Google Scholar 

  43. Kaufman A J, Knoll A H. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Res, 1995, 73(1–4): 27–49

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GanQing Jiang.

Additional information

Supported by Ministry of Education of China (Grant Nos. IRT0546 and NCET-04-727), the National Natural Science Foundation of China (Grant Nos. 40621002, 40572019) and the National Science Foundation of USA (Grant No. EAR0745825)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, G., Zhang, S., Shi, X. et al. Chemocline instability and isotope variations of the Ediacaran Doushantuo basin in South China. Sci. China Ser. D-Earth Sci. 51, 1560–1569 (2008). https://doi.org/10.1007/s11430-008-0116-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-008-0116-2

Keywords

Navigation