Skip to main content
Log in

Dipole tilt controls bow shock location and flaring angle

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The dipole tilt angle has been found to affect Earth’s bow shock. This work presents a quantitative relationship between the dipole tilt angle and the bow shock location and flaring angle. We collected a large data set of bow shock crossings from four different satellites (IMP 8, Geotail, Magion 4, and Cluster), including some recent crossings obtained during 2012–2013. The results from a statistical analysis demonstrate that: (1) the subsolar standoff distance increases but the flaring angle decreases with increasing dipole tilt angle; (2) when the dipole tilt angle changes sign from negative to positive, the dayside bow shock moves toward Earth and the shift can be as much as 2.29 R E, during which the flaring angle increases; and (3) the shape of bow shock in the northern and southern hemispheres differs. For the northern hemisphere bow shock, with increasing positive/negative dipole tilt angle, the flaring angle increases/decreases. While for the southern hemisphere, the trend is the opposite; with increasing positive/negative dipole tilt angle, the flaring angle decreases/increases. These results are helpful for future bow shock modeling that needs to include the effects of dipole tilt angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boardsen S A, Eastman T E, Sotirelis T, Green J L. 2000. An empirical model of the high-latitude magnetopause. J Geophys Res, 105: 23193–23219

    Article  Google Scholar 

  • Cairns I H, Smith C W, Kurth W S, Gurnett D A, Lepping R P. 1991. Remote sensing of Neptune’s bow shock: Evidence for large-scale shock motions. J Geophys Res, 96: 19153

    Article  Google Scholar 

  • Chao, J K, Wu D J, Lin C H, Yang Y H, Wang X Y, Kessel M, Chen S H, Lepping R P. 2002). Models for the size and shape of the Earth’s magnetopause and bow shock. In: Lyu L H, ed. Space Weather Study Using Multipoint Techniques. Proceedings of the COSPAR Colloquium. COSPAR Colloq Ser Oxford: Pergamon, 12: 127–134

    Chapter  Google Scholar 

  • Chapman J F, Cairns I H. 2003. Three-dimensional modeling of Earth’s bow shock: Shock shape as a function of Alfvén Mach number. J Geophys Res, 108: 1174

    Google Scholar 

  • Chapman J F, Cairns I H, Lyon J G, Boshuizen C R. 2004. MHD simulations of Earth’s bow shock: Interplanetary magnetic field orientation effects on shape and position. J Geophys Res, 109: A04215

    Google Scholar 

  • Choe J Y, Beard D B, Sullivan E C. 1973. Precise calculation of the magnetosphere surface for a tilted dipole. Planet Space Sci, 21: 485–498

    Article  Google Scholar 

  • De Sterk H, Poedts S. 1999. Field-aligned magnetohydrodynamic bow shock flows in the switch-on regime. Astron Astrophys, 343: 641–649

    Google Scholar 

  • Dmitriev A V, Chao J K, Wu D J. 2003. Comparative study of bow shock models using Wind and Geotail observations. J Geophys Res, 108: 1464

    Article  Google Scholar 

  • Eastman T E, Boardsen S A, Chen S H, Fung S F, Kessel R L. 2000. Configuration of high-latitude and high-altitude boundary layers. J Geophys Res, 105: 23221–23238

    Article  Google Scholar 

  • Fairfield D H, Iver H C, Desch M D, Szabo A, Lazarus A J, Aellig M R. 2001. The location of low Mach number bow shocks at Earth. J Geophys Res, 106: 25361–25376

    Article  Google Scholar 

  • Fairfield D H. 1971. Average and unusual locations of the Earth’s magnetopause and bow shock. J Geophys Res, 76: 6700–6716

    Article  Google Scholar 

  • Farris M H, Petrinec S M, Russell C T. 1991. The thickness of the magnetosheath: Constraints on the polytropic index. Geophys Res Lett, 18: 1821–1824

    Article  Google Scholar 

  • Ferraro V C A. 1960. An approximate method of estimating the size and shape of the stationary hollow carved out in a neutral ionized stream of corpuscles impinging on the geomagnetic field. J Geophys Res, 65: 3951–3953

    Article  Google Scholar 

  • Formisano V. 1979. Orientation and shape of the Earth’s bow shock in three dimensions. Planet Space Sci, 27: 1151–1161

    Article  Google Scholar 

  • Jelínek K. Z., Nemecek Z, Šafránková J. 2006. Simultaneous Observations of the Bow Shock and Magnetopause Motions. In: WDS’06 Proceedings of Contributed Papers. 14–20

    Google Scholar 

  • Jelínek K, Nemecek Z, Šafránková J, Merka J. 2008. Influence of the tilt angle on the bow shock shape and location. J Geophys Res, 113: A05220

    Article  Google Scholar 

  • Jelínek K, Nemecek Z, Šafránková J. 2012. A new approach to magnetopause and bow shock modeling based on automated region identification. J Geophys Res, 117: A05208

    Article  Google Scholar 

  • Jeráb M, Nemecek Z, Šafránková J, Jelínek K, Merka J. 2005. Improved bow shock model with dependence on the IMF strength. Planet Space Sci, 53: 85–93

    Article  Google Scholar 

  • Lin R L, Zhang X X, Liu S Q, Wang Y L, Gong J C. 2010. A three-dimensional asymmetric magnetopause model. J Geophys Res, 115: A04207

    Google Scholar 

  • Liu Z Q, Lu J Y, Kabin K, Yang Y F, Zhao M X, Cao X. 2012. Dipole tilt control of the magnetopause for southward IMF from global magnetohydrodynamic simulations. J Geophys Res, 117: A07207

    Google Scholar 

  • Liu Z Q, Lu J Y, Wang C, Kabin K, Zhao J S, Wang M, Han J P, Wang J Y, Zhao M X. 2015. A three-dimensional high Mach number asymmetric magnetopause model from global MHD simulation. J Geophys Res Space Phys, 120: 5645–5666

    Article  Google Scholar 

  • Lu J Y, Liu Z Q, Kabin K, Zhao M X, Liu D D, Zhou Q, Xiao Y. 2011. Three dimensional shape of the magnetopause: Global MHD results. J Geophys Res, 116: A09237

    Article  Google Scholar 

  • Merka J, Szabo A. 2004. Bow shock’s geometry at the magnetospheric flanks. J Geophys Res, 109: A12224

    Article  Google Scholar 

  • Nemecek Z, Merka J, Šafránková J. 2000. The tilt angle control of the outer cusp position. Geophys Res Lett, 27: 77–80

    Article  Google Scholar 

  • Peredo M, Slavin J A, Mazur E, Curtis S A. 1995. Three-dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation. J Geophys Res, 100: 7907–7916

    Article  Google Scholar 

  • Petrinec S M, Russell C T. 1995. An examination of the effect of dipole tilt angle and cusp regions on the shape of the dayside magnetopause. J Geophys Res, 100: 9559–9566

    Article  Google Scholar 

  • Roelof E C, Sibeck D G. 1993. Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure. J Geophys Res, 98: 21421–21450

    Article  Google Scholar 

  • Russell C T, Zhang T L. 1992. Unusually distant bow shock encounters at Venus. Geophys Res Lett, 19: 833–836

    Article  Google Scholar 

  • Šafránková J Dušík, Nemecek Z. 2005. The shape and location of the highlatitude magnetopause. Adv Space Res, 36: 1934–1939

    Article  Google Scholar 

  • Šafránková J, Nemecek Z Dušík, Prech L, Sibeck D G, Borodkova N N. 2002. The magnetopause shape and location: A comparison of the Interball and Geotail observations with models. Ann Geophys, 20: 301–309

    Article  Google Scholar 

  • Shi Q Q, Hartinger M D, Angelopoulos V, Tian A M, Fu S Y, Zong Q G, Weygand J M, Raeder J, Pu Z Y, Zhou X Z, Dunlop M W, Liu W L, Zhang H, Yao Z H, Shen X C. 2014. Solar wind pressure pulse-driven magnetospheric vortices and their global consequences. J Geophys Res Space Phys, 119: 4274–4280

    Article  Google Scholar 

  • Shue J H, Song P, Russell C T, Steinberg J T, Chao J K, Zastenker G, Vaisberg O L, Kokubun S, Singer H J, Detman T R, Kawano H. 1998. Magnetopause location under extreme solar wind conditions. J Geophys Res, 103: 17691–17700

    Article  Google Scholar 

  • Shue J H, Chao J K, Fu H C, Russell C T, Song P, Khurana K K, Singer H J. 1997. A new functional form to study the solar wind control of the magnetopause size and shape. J Geophys Res, 102: 9497–9511

    Article  Google Scholar 

  • Slavin J A, Holzer R E. 1981. Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape. J Geophys Res, 86: 11401–11418

    Google Scholar 

  • Sotirelis T, Meng C I. 1999. Magnetopause from pressure balance. J Geophys Res, 104: 6889–6898

    Article  Google Scholar 

  • Spreiter J R, Summers A L, Alksne A Y. 1966. Hydromagnetic flow around the magnetosphere. Planet Space Sci, 14: 223–253

    Article  Google Scholar 

  • Tsyganenko N A. 1998. Modeling of twisted/warped magnetospheric configurations using the general deformation method. J Geophys Res, 103: 23551–23563

    Article  Google Scholar 

  • Verigin M I, Kotova G A, Slavin J, Szabo A, Kessel M, Safrankova J, Nemecek Z, Gombosi T I, Kabin K, Shugaev F, Kalinchenko A. 2001a. Analysis of the 3-D shape of the terrestrial bow shock by interball/magion 4 observations. Adv Space Res, 28: 857–862

    Article  Google Scholar 

  • Verigin M, Kotova G, Shutte N, Remizov A, Szegö K, Tátrallyay M, Apáthy I, Rosenbauer H, Livi S, Richter A K, Schwingenschuh K, Zhang T L, Slavin J, Lemaire J. 1997. Quantitative model of the Martian magnetopause shape and its variation with the solar wind ram pressure based on Phobos 2 observations. J Geophys Res, 102: 2147–2155

    Article  Google Scholar 

  • Verigin M, Kotova G, Szabo A, Slavin J, Gombosi T, Kabin K, Shugaev F, Kalinchenko A. 2001b. Wind observations of the terrestrial bow shock: 3-D shape and motion. Earth Planet Sp, 53: 1001–1009

    Article  Google Scholar 

  • Wang C, Guo X C, Peng Z, Tang B B, Sun T R, Li W Y, Hu Y Q. 2013. Magnetohydrodynamics (MHD) numerical simulations on the interaction of the solar wind with the magnetosphere: A review. Sci China Earth Sci, 56: 1141–1157

    Article  Google Scholar 

  • Wu C C. 1984. The effects of dipole tilt on the structure of the magnetosphere. J Geophys Res, 89: 11048–11052

    Article  Google Scholar 

  • Wu D J, Chao J K, Lepping R P. 2000. Interaction between an interplanetary magnetic cloud and the Earth’s magnetosphere: Motions of the bow shock. J Geophys Res, 105: 12627–12638

    Article  Google Scholar 

  • Zhou X W, Russell C T. 1997. The location of the high-latitude polar cusp and the shape of the surrounding magnetopause. J Geophys Res, 102: 105–110

    Article  Google Scholar 

  • Zhou X W, Russell C T, Le G, Fuselier S A, Scudder J D. 1999. The polar cusp location and its dependence on dipole tilt. Geophys Res Lett, 26: 429–432

    Article  Google Scholar 

Download references

Acknowledgments

We benefited from the helpful discussion with Dr Q Hu. We also acknowledge the service of NASA/CDAWeb and the OMNI. This work was supported by the National Basic Research Program of China (Grant No. 2012CB825606), the National Natural Science Foundation of China (Grant Nos. 41574158, U1631107), and the China Meteorological Administration (Grant No. GYHY201106011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HuanZhi Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Yuan, H., Wang, M. et al. Dipole tilt controls bow shock location and flaring angle. Sci. China Earth Sci. 60, 198–206 (2017). https://doi.org/10.1007/s11430-015-0268-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-0268-8

Keywords

Navigation