Skip to main content
Log in

Shape and position of Earth’s bow shock near-lunar orbit based on ARTEMIS data

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Earth’s bow shock is the result of interaction between the supersonic solar wind and Earth’s magnetopause. However, data limitations mean the model of the shape and position of the bow shock are based largely on near-Earth satellite data. The model of the bow shock in the distant magnetotail and other factors that affect the bow shock, such as the interplanetary magnetic field (IMF) B y , remain unclear. Here, based on the bow shock crossings of ARTEMIS from January 2011 to January 2015, new coefficients of the tail-flaring angle α of the Chao model (one of the most accurate models currently available) were obtained by fitting data from the middle-distance magnetotail (near-lunar orbit, geocentric distance -20R E>X>-50R E). In addition, the effects of the IMF B y on the flaring angle α were analyzed. Our results showed that: (1) the new fitting coefficients of the Chao model in the middle-distance magnetotail are more consistent with the observed results; (2) the tail-flaring angle α of the bow shock increases as the absolute value of the IMF B y increases. Moreover, positive IMF B y has a greater effect than negative IMF B y on flaring angle. These results provide a reference for bow shock modeling that includes the IMF B y .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett L, Kivelson M G, Khurana K K. 1997. A model of the Earth’s distant bow shock. J Geophys Res, 102: 26927–26942

    Article  Google Scholar 

  • Binsack J H, Vasyliunas V M. 1968. Simultaneous IMP 2 and OGO 1 observations of bow shock compression. J Geophys Res, 73: 429

    Article  Google Scholar 

  • Chao J K, Wu D J, Lin C H, Yang Y H. 2002. Models for the size and shape of the Earth’s magnetopause and bow shock. Cospar Colloq Ser, 12: 127–135

    Article  Google Scholar 

  • Chapman J F, Cairns I H. 2003. Three-dimensional modeling of Earth’s bow shock: Shock shape as a function of Alfvén Mach number. J Geophys Res, 108: A5, doi: 10.1029/2002JA009569

    Google Scholar 

  • Chapman J F, Cairns I H, Lyon J G, Boshuizen C R. 2004. MHD simulations of Earth’s bow shock: Interplanetary magnetic field orientation effects on shape and position. J Geophys Res, 109: A4, doi: 10.1029/2003JA010235

    Google Scholar 

  • Dmitriev A V, Chao J K, Wu D J. 2003. Comparative study of bow shock models using Wind and Geotail observations. J Geophys Res, 108: A12, doi: 10.1029/2003JA010027

    Google Scholar 

  • Fairfleld D H. 1971. Average and unusual locations of the Earth’s magnetopause and bow shock. J Geophys Res, 76: 6700

    Article  Google Scholar 

  • Farris M H, Petrinec S M, Russell C T. 1991. The thickness of the magnetosheath—Constraints on the polytropic index. Geophys Res Lett, 8: 1821–1824

    Article  Google Scholar 

  • Farris M H, Russell C T. 1994. Determining the standoff distance of the bow shock: Mach number dependence and use of models. J Geophys Res, 99: 17681–17689

    Article  Google Scholar 

  • Formisano V. 1979. Orientation and shape of the Earth’s bow shock in three dimensions. Planet Space Sci, 27: 1151–1161

    Article  Google Scholar 

  • Hu H P, Lu J Y, Zhou Q, Wang M, Yang Y F, Liu Z Q, Pei S X. 2015. Simulation of three-dimensional Earth’s bow shock (in Chinese). Chin J Space Sci, 35: 1–8, doi: 10.11728/cjss2015.01.001

    Google Scholar 

  • Hu Y Q, Peng Z, Wang C. 2010. Rotational asymmetry of Earth’s bow shock (in Chinese). Chin J Geophys, 53: 773–781

    Article  Google Scholar 

  • Kellogg P J. 1962. Flow of plasma around the Earth. J Geophys Res, 67: 3805–3811

    Article  Google Scholar 

  • Liu Z Q, Lu J Y, Kabin K, Yang Y F, Zhao M X, Cao X. 2012. Dipole tilt control of the magnetopause for southward IMF from global magnetohydrodynamic simulations. J Geophys Res, 117: A7, doi: 10.1029/2011JA017441

    Google Scholar 

  • Lu J Y, Liu Z Q, Kabin K, Jing H, Zhao M X, Wang Y. 2013. The IMF dependence of the magnetopause from global MHD simulations. J Geophys Res, 118: 3113–3125

    Article  Google Scholar 

  • Merka J, Szabo A, Narock T W, King J H, Paularena K I, Richardson J D. 2003. A comparison of IMP 8 observed bow shock positions with model predictions. J Geophys Res, 108: A2, doi: 10.1029/2002JA009384

    Google Scholar 

  • Merka J, Szabo A, Narock T W, Richardson J D, King J H. 2005a. Three decades of bow shock observations by IMP 8 and model predictions. Planet Space Sci, 53: 79–84

    Article  Google Scholar 

  • Merka J, Szabo A, Slavin J A, Peredo M. 2005b. Three-dimensional position and shape of the bow shock and their variation with upstream Mach numbers and interplanetary magnetic field orientation. J Geophys Res, 110: A4, doi: 10.1029/2004JA010944

    Article  Google Scholar 

  • Ness N F. 1966. Earth’s magnetic field: A new look. Science, 151: 1041–1052

    Article  Google Scholar 

  • Parker E N. 1963. Interplanetary Dynamical Process. New York: Interscience

    Google Scholar 

  • Peredo M, Slavin J A, Mazur E, Curtis S A. 1995. Three-dimensional position and shape of the bow shock and their variation with Alfvenic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation. J Geophys Res, 100: 7907–7916

    Article  Google Scholar 

  • Shi Q Q, Zong Q G, Zhang H, Pu Z Y, Fu S Y, Xie L, Chen Y, Li L, Xia L D, Liu Z X, Fazakerley A H, Reme H, Lucek E. 2009. Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field. J Geophys Res, 114: A12219, doi: 10.1029/2009JA014475

    Google Scholar 

  • Shi Q Q, Zong Q G, Fu S Y, Dunlop M W, Pu Z Y, Parks G K, Wei Y, Li W H, Zhang H, Nowada M, Wang Y B, Sun W J, Xiao T, Reme H, Carr C, Fazakerley A H, Lucek E. 2013. Solar wind entry into the highlatitude terrestrial magnetosphere during geomagnetically quiet times. Nat Commun, 4, doi: 10.1038/ncomms2476

    Google Scholar 

  • Shi Q Q, Hartinger M D, Angelopoulos V, Tian A M, Fu S Y, Zong Q G, Weygand J M, Raeder J, Pu Z Y, Zhou X Z, Dunlop M W, Liu W L, Zhang H, Yao Z H, Shen X C. 2014. Solar wind pressure pulse-driven magnetospheric vortices and their global consequences. J Geophys Res, 119: 4274–4280, doi: 10.1002/2013JA019551

    Article  Google Scholar 

  • Wang J Y, Huang Z H, Wang C, Liu Z Q. 2015. Effects of the interplanetary magnetic field clock angle on the shape of bow shock. Sci China Earth Sci, 58: 1228–1234, doi: 10.1007/s11430-015-5052-3

    Article  Google Scholar 

  • Wang M, Lu J Y, Yuan H Z, Kabin K, Liu Z Q, Zhao M X, Li G. 2015. The dipole tilt angle dependence of the bow shock for southward IMF: MHD results. Planet Space Sci, 106: 99–107

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to QuanQi Shi or AnMin Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Shi, Q., Tian, A. et al. Shape and position of Earth’s bow shock near-lunar orbit based on ARTEMIS data. Sci. China Earth Sci. 59, 1700–1706 (2016). https://doi.org/10.1007/s11430-016-5319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-016-5319-3

Keywords

Navigation