Skip to main content
Log in

Space- and ground-based CO2 measurements: A review

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The climate warming is mainly due to the increase in concentrations of anthropogenic greenhouse gases, of which CO2 is the most important one responsible for radiative forcing of the climate. In order to reduce the great estimation uncertainty of atmospheric CO2 concentrations, several CO2-related satellites have been successfully launched and many future greenhouse gas monitoring missions are planned. In this paper, we review the development of CO2 retrieval algorithms, spatial interpolation methods and ground observations. The main findings include: 1) current CO2 retrieval algorithms only partially account for atmospheric scattering effects; 2) the accurate estimation of the vertical profile of greenhouse gas concentrations is a long-term challenge for remote sensing techniques; 3) ground-based observations are too sparse to accurately infer CO2 concentrations on regional scales; and 4) accuracy is the primary challenge of satellite estimation of CO2 concentrations. These findings, taken as a whole, point to the need to develop a high accuracy method for simulation of carbon sources and sinks on the basis of the fundamental theorem of Earth’s surface modelling, which is able to efficiently fuse space- and ground-based measurements on the one hand and work with atmospheric transport models on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aben I, Hasekamp O, Hartmann W. 2007. Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth’s atmosphere. J Quant Spectrosc Ra, 104: 450–459

    Article  Google Scholar 

  • Ackerman K V, Sundquist E T. 2008. Comparison of two U.S. power-plant carbon dioxide emissions data sets. Environ Sci Technol, 42: 5688–5693

    Article  Google Scholar 

  • Andrews A E, Kofler J D, Trudeau M E, Williams J C, Neff D H, Masarie K A, Chao D Y, Kitzis D R, Novelli P C, Zhao C L, Dlugokencky E J, Lang P M, Crotwell M J, Fischer M L, Parker M J, Lee J T, Baumann D D, Desai A R, Stanier C O, De Wekker S F J, Wolfe D E, Munger J W, Tans P P. 2014. CO2, CO, and CH4 measurements from tall towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts. Atmos Meas Tech, 7: 647–687

    Article  Google Scholar 

  • Aumann H H, Chahine M T, Gautier C, Goldberg M D, Kalnay E, McMillin L M, Revercomb H, Rosenkranz P W, Smith W L, Staelin D H, Strow L L, Susskind J. 2003. AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans Geosci Remote Sensing, 41: 253–264

    Article  Google Scholar 

  • Bakwin P S, Tans P P, Hurst D F, Zhao C. 1998. Measurements of carbon dioxide on very tall towers: Results of the NOAA/CMDL program. Tellus B, 50: 401–415

    Article  Google Scholar 

  • Baldocchi D. 2008. ‘Breathing’ of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot, 56: 1–26

    Article  Google Scholar 

  • Basu S, Krol M, Butz A, Clerbaux C, Sawa Y, Machida T, Matsueda H, Frankenberg C, Hasekamp O P, Aben I. 2014. The seasonal variation of the CO2 flux over Tropical Asia estimated from GOSAT, CONTRAIL, and IASI. Geophys Res Lett, 41: 1809–1815

    Article  Google Scholar 

  • Bösch H, Toon G C, Sen B, Washenfelder R A, Wennberg P O, Buchwitz M, de Beek R, Burrows J P, Crisp D, Christi M, Connor B J, Natraj V, Yung Y L. 2006. Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin. J Geophys Res, 111: D23302

    Article  Google Scholar 

  • Bovensmann H, Buchwitz M, Burrows J P, Reuter M, Krings T, Gerilowski K, Schneising O, Heymann J, Tretner A, Erzinger J. 2010. A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications. Atmos Meas Tech, 3: 781–811

    Article  Google Scholar 

  • Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Chance K V, Goede A P H. 1999. SCIAMACHY: Mission objectives and measurement modes. J Atmos Sci, 56: 127–150

    Article  Google Scholar 

  • Bréon F M, Ciais P. 2010. Spaceborne remote sensing of greenhouse gas concentrations. C R Geosci, 342: 412–424

    Article  Google Scholar 

  • Bril A, Oshchepkov S, Yokota T, Inoue G. 2007. Parameterization of aerosol and cirrus cloud effects on reflected sunlight spectra measured from space: Application of the equivalence theorem. Appl Opt, 46: 2460–2470

    Article  Google Scholar 

  • Buchwitz M, de Beek R, Noël S, Burrows J P, Bovensmann H, Schneising O, Khlystova I, Bruns M, Bremer H, Bergamaschi P, Körner S, Heimann M. 2006. Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: Version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval. Atmos Chem Phys, 6: 2727–2751

    Article  Google Scholar 

  • Buchwitz M, Reuter M, Bovensmann H, Pillai D, Heymann J, Schneising O, Rozanov V, Krings T, Burrows J P, Boesch H, Gerbig C, Meijer Y, Löscher A. 2013. Carbon Monitoring Satellite (CarbonSat): Assessment of atmospheric CO2 and CH4 retrieval errors by error parameterization. Atmos Meas Tech, 6: 3477–3500

    Article  Google Scholar 

  • Buchwitz M, Rozanov V V, Burrows J P. 2000. A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances. J Geophys Res, 105: 15231–15245

    Article  Google Scholar 

  • Butz A, Guerlet S, Hasekamp O, Schepers D, Galli A, Aben I, Frankenberg C, Hartmann J M, Tran H, Kuze A, Keppel-Aleks G, Toon G, Wunch D, Wennberg P, Deutscher N, Griffith D, Macatangay R, Messerschmidt J, Notholt J, Warneke T. 2011. Toward accurate CO2 and CH4 observations from GOSAT. Geophys Res Lett, 38: L14812

    Article  Google Scholar 

  • Butz A, Hasekamp O P, Frankenberg C, Aben I. 2009. Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: Accounting for aerosol effects. Appl Opt, 48: 3322–3336

    Article  Google Scholar 

  • Ciais P, Paris J D, Marland G, Peylin P, Piao S L, Levin I, Pregger T, Scholz Y, Friedrich R, Rivier L, Houwelling S, Schulze E D. 2010. The European carbon balance. Part 1: Fossil fuel emissions. Glob Change Biol, 16: 1395–1408

    Article  Google Scholar 

  • Cogan A J, Boesch H, Parker R J, Feng L, Palmer P I, Blavier J F L, Deutscher N M, Macatangay R, Notholt J, Roehl C, Warneke T, Wunch D. 2012. Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): Comparison with ground-based TCCON observations and GEOS-Chem model calculations. J Geophys Res, 117: D21301

    Article  Google Scholar 

  • Connor B J, Boesch H, Toon G, Sen B, Miller C, Crisp D. 2008. Orbiting Carbon Observatory: Inverse method and prospective error analysis. J Geophys Res, 113: D05305

    Article  Google Scholar 

  • Crevoisier C, Chédin A, Matsueda H, Machida T, Armante R, Scott N A. 2009. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations. Atmos Chem Phys, 9: 4797–4810

    Article  Google Scholar 

  • Crisp D, Fisher B M, O’Dell C, Frankenberg C, Basilio R, Bösch H, Brown L R, Castano R, Connor B, Deutscher N M, Eldering A, Griffith D, Gunson M, Kuze A, Mandrake L, McDuffie J, Messerschmidt J, Miller C E, Morino I, Natraj V, Notholt J, O’Brien D M, Oyafuso F, Polonsky I, Robinson J, Salawitch R, Sherlock V, Smyth M, Suto H, Taylor T E, Thompson D R, Wennberg P O, Wunch D, Yung Y L. 2012. The ACOS CO2 retrieval algorithm-Part II: Global XCO2 data characterization. Atmos Meas Tech, 5: 687–707

    Article  Google Scholar 

  • Dennison P E, Thorpe A K, Pardyjak E R, Roberts D A, Qi Y, Green R O, Bradley E S, Funk C C. 2013. High spatial resolution mapping of elevated atmospheric carbon dioxide using airborne imaging spectroscopy: Radiative transfer modeling and power plant plume detection. Remote Sens Environ, 139: 116–129

    Article  Google Scholar 

  • Dufour E, Bréon F M. 2003. Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: Error analysis. Appl Opt, 42: 3595–3609

    Article  Google Scholar 

  • Evrendilek F. 2014. Modeling net ecosystem carbon dioxide exchange using temporal neural networks after wavelet denoising. Geogr Anal, 46: 37–52

    Article  Google Scholar 

  • Frankenberg C, O’Dell C, Guanter L, McDuffie J. 2012. Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: Implications for its retrieval and interferences with atmospheric CO2 retrievals. Atmos Meas Tech, 5: 2081–2094

    Article  Google Scholar 

  • Gregg J S, Andres R J, Marland G. 2008. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production. Geophys Res Lett, 35: L08806

    Article  Google Scholar 

  • Gribanov K G, Imasu R, Zakharov V I. 2010. Neural networks for CO2 profile retrieval from the data of GOSAT/TANSO-FTS. Atmos Ocean Opt, 23: 42–47

    Article  Google Scholar 

  • Hasekamp O P, Butz A. 2008. Efficient calculation of intensity and polarization spectra in vertically inhomogeneous scattering and absorbing atmospheres. J Geophys Res, 113: D20309

    Article  Google Scholar 

  • Hammerling D M, Michalak A M, Kawa S R. 2012a. Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2. J Geophys Res, 117: D06306

    Article  Google Scholar 

  • Hammerling D M, Michalak A M, O'Dell C, Kawa S R. 2012b. Global CO2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT). Geophys Res Lett, 39: L08804

    Article  Google Scholar 

  • Heymann J, Bovensmann H, Buchwitz M, Burrows J P, Deutscher N M, Notholt J, Rettinger M, Reuter M, Schneising O, Sussmann R, Warneke T. 2012. SCIAMACHY WFM-DOAS XCO2: Reduction of scattering related errors. Atmos Meas Tech, 5: 2375–2390

    Article  Google Scholar 

  • Houweling S, Hartmann W, Aben I, Schrijver H, Skidmore J, Roelofs G J, Breon F M. 2005. Evidence of systematic errors in SCIAMACHYobserved CO2 due to aerosols. Atmos Chem Phys, 5: 3003–3013

    Article  Google Scholar 

  • IPCC. 2013. Summary for policymakers. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press

    Google Scholar 

  • Ishida H, Nakajima T Y. 2009. Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. J Geophys Res, 114: D07206

    Article  Google Scholar 

  • Jiang X, Chahine M T, Olsen E T, Chen L L, Yung Y L. 2010. Interannual variability of mid-tropospheric CO2 from Atmospheric Infrared Sounder. Geophys Res Lett, 37: L13801

    Google Scholar 

  • Joiner J, Yoshida Y, Vasilkov A P, Yoshida Y, Corp L A, Middleton E M. 2011. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences, 8: 637–651

    Article  Google Scholar 

  • Kharin V V, Zwiers F W. 2002. Climate Predictions with Multimodel Ensembles. J Clim, 15: 793–799

    Article  Google Scholar 

  • Kobza J, Mlčák J. 1994. Biquadratic splines interpolating mean values. Appl Math-Czech, 39: 339–356

    Google Scholar 

  • Komhyr W D, Gammon R H, Harris T B, Waterman L S, Conway T J, Taylor W R, Thoning K W. 1985. Global atmospheric CO2 distribution and variations from 1968–1982 NOAA/GMCC CO2 flask sample data. J Geophys Res, 90: 5567–5596

    Article  Google Scholar 

  • Kuhlmann G, Hartl A, Cheung H M, Lam Y F, Wenig M O. 2014. A novel gridding algorithm to create regional trace gas maps from satellite observations. Atmos Meas Tech, 7: 451–467

    Article  Google Scholar 

  • Kulawik S S, Jones D B A, Nassar R, Irion F W, Worden J R, Bowman K W, Machida T, Matsueda H, Sawa Y, Biraud S C, Fischer M L, Jacobson A R. 2010. Characterization of Tropospheric Emission Spectrometer (TES) CO2 for carbon cycle science. Atmos Chem Phys, 10: 5601–5623

    Article  Google Scholar 

  • Lancaster P, Salkauskas K. 1986. Curve and Surface Fitting: An Introduction. London: Academic Press Ltd

    Google Scholar 

  • Li Y, Deng J, Mu C, Xing Z, Du K. 2014. Vertical distribution of CO2 in the atmospheric boundary layer: Characteristics and impact of meteorological variables. Atmos Environ, 91: 110–117

    Article  Google Scholar 

  • Machida T, Matsueda H, Sawa Y, Nakagawa Y, Hirotani K, Kondo N, Goto K, Nakazawa T, Ishikawa K, Ogawa T. 2008. Worldwide measurements of atmospheric CO2 and other trace gas species using commercial airlines. J Atmos Oceanic Technol, 25: 1744–1754

    Article  Google Scholar 

  • Masarie K A, Tans P P. 1995. Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J Geophys Res, 100: 11593–11610

    Article  Google Scholar 

  • Meehl G A, Washington W M. 1996. El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382: 56–60

    Article  Google Scholar 

  • Moss R, Babiker M, Brinkman S, Calvo E, Carter T, Edmonds J, Elgizouli I, Emori S, Erda L, Hibbard K, Jones R, Kainuma M, Kelleher J, Lamarque J F, Manning M, Matthews B, Meehl J, Meyer L, Mitchell J, Nakicenovic N, O’Neill B, Pichs R, Riahi K, Rose S, Runci P, Stouffer R, van Vuuren D, Weyant J, Wilbanks T, van Ypersele J P, Zurek M. 2008. Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Technical Summary. Geneva: Intergovernmental Panel on Climate Change

    Google Scholar 

  • Oberheitmann A. 2010. A new post-Kyoto climate regime based on percapita cumulative CO2-emission rights—Rationale, architecture and quantitative assessment of the implication for the CO2-emissions from China, India and the Annex-I countries by 2050. Mitig Adapt Strateg Glob Change, 15: 137–168

    Article  Google Scholar 

  • Oberheitmann A. 2013. Some remarks on the individual contribution to climate change. Amer J Clim Change, 2: 198–202

    Article  Google Scholar 

  • O’Brien D M, Rayner P J. 2002. Global observations of the carbon budget, 2, CO2 column from differential absorption of reflected sunlight in the 1.61 μm band of CO2. J Geophys Res, 107: 4354

    Article  Google Scholar 

  • O’Dell C W, Connor B, Bösch H, O’Brien D, Frankenberg C, Castano R, Christi M, Eldering D, Fisher B, Gunson M, McDuffie J, Miller C E, Natraj V, Oyafuso F, Polonsky I, Smyth M, Taylor T, Toon G C, Wennberg P O, Wunch D. 2012. The ACOS CO2 retrieval algorithm—Part 1: Description and validation against synthetic observations. Atmos Meas Tech, 5: 99–121

    Article  Google Scholar 

  • O’Neill B C, Oppenheimer M. 2002. Dangerous climate impacts and the kyoto protocol. Science, 296: 1971–1972

    Article  Google Scholar 

  • Oshchepkov S, Bril A, Yokota T. 2008. PPDF-based method to account for atmospheric light scattering in observations of carbon dioxide from space. J Geophys Res, 113: D23210

    Article  Google Scholar 

  • Oshchepkov S, Bril A, Yokota T. 2009. An improved photon path length probability density function-based radiative transfer model for spacebased observation of greenhouse gases. J Geophys Res, 114: D19207

    Article  Google Scholar 

  • Oshchepkov S, Bril A, Yokota T, Morino I, Yoshida Y, Matsunaga T, Belikov D, Wunch D, Wennberg P, Toon G, O’Dell C, Butz A, Guerlet S, Cogan A, Boesch H, Eguchi N, Deutscher N, Griffith D, Macatangay R, Notholt J, Sussmann R, Rettinger M, Sherlock V, Robinson J, Kyrö E, Heikkinen P, Feist D G, Nagahama T, Kadygrov N, Maksyutov S, Uchino O, Watanabe H. 2012. Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space: Validation of PPDF-based CO2 retrievals from GOSAT. J Geophys Res, 117: D12305

    Article  Google Scholar 

  • Pearman G I, Etheridge D, de Silva F, Fraser P J. 1986. Evidence of changing concentrations of atmospheric CO2, N2O and CH4 from air bubbles in Antarctic ice. Nature, 320: 248–250

    Article  Google Scholar 

  • Rayner P J, O’Brien D M. 2001. The utility of remotely sensed CO2 concentration data in surface source inversions. Geophys Res Lett, 28: 175–178

    Article  Google Scholar 

  • Reuter M, Buchwitz M, Schneising O, Heymann J, Bovensmann H, Burrows J P. 2010. A method for improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds. Atmos Meas Tech, 3: 209–232

    Article  Google Scholar 

  • Reuter M, Buchwitz M, Schneising O, Hase F, Heymann J, Guerlet S, Cogan A J, Bovensmann H, Burrows J P. 2012. A simple empirical model estimating atmospheric CO2 background concentrations. Atmos Meas Tech, 5: 1349–1357

    Article  Google Scholar 

  • Reuter M, Bösch H, Bovensmann H, Bril A, Buchwitz M, Butz A, Burrows J P, O’Dell C W, Guerlet S, Hasekamp O, Heymann J, Kikuchi N, Oshchepkov S, Parker R, Pfeifer S, Schneising O, Yokota T, Yoshida Y. 2013. A joint effort to deliver satellite retrieved atmospheric CO2 concentrations for surface flux inversions: The ensemble median algorithm EMMA. Atmos Chem Phys, 13: 1771–1780

    Article  Google Scholar 

  • Rodgers C D. 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice. Singapore: World Scientific Publishing

    Book  Google Scholar 

  • Schneising O, Bergamaschi P, Bovensmann H, Buchwitz M, Burrows J P, Deutscher N M, Griffith D W T, Heymann J, Macatangay R, Messerschmidt J, Notholt J, Rettinger M, Reuter M, Sussmann R, Velazco V A, Warneke T, Wennberg P O, Wunch D. 2012. Atmospheric greenhouse gases retrieved from SCIAMACHY: Comparison to ground-based FTS measurements and model results. Atmos Chem Phys, 12: 1527–1540

    Article  Google Scholar 

  • Schneising O, Buchwitz M, Burrows J P, Bovensmann H, Reuter M, Notholt J, Macatangay R, Warneke T. 2008. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite—Part 1: Carbon dioxide. Atmos Chem Phys, 8: 3827–3853

    Article  Google Scholar 

  • Schneising O, Buchwitz M, Reuter M, Heymann J, Bovensmann H, Burrows J P. 2011. Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmos Chem Phys, 11: 2863–2880

    Article  Google Scholar 

  • Stauch V J, Jarvis A J, Schulz K. 2008. Estimation of net carbon exchange using eddy covariance CO2 flux observations and a stochastic model. J Geophys Res, 113: D03101

    Article  Google Scholar 

  • Vautard R, Schaap M, Bergström R, Bessagnet B, Brandt J, Builtjes P J H, Christensen J H, Cuvelier C, Foltescu V, Graff A, Kerschbaumer A, Krol M, Roberts P, Rouïl L, Stern R, Tarrason L, Thunis P, Vignati E, Wind P. 2009. Skill and uncertainty of a regional air quality model ensemble. Atmos Environ, 43: 4822–4832

    Article  Google Scholar 

  • West T O, Marland G. 2002. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric Ecosyst Environ, 91: 217–232

    Article  Google Scholar 

  • Wigley T M L, Richels R, Edmonds J A. 1996. Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature, 379: 240–243

    Article  Google Scholar 

  • Wunch D, Toon G C, Blavier J F L, Washenfelder R A, Notholt J, Connor B J, Griffith D W T, Sherlock V, Wennberg P O. 2011. The total carbon column observing network. Philos Trans R Soc A-Math Phys Eng Sci, 369: 2087–2112

    Article  Google Scholar 

  • Wunch D, Toon G C, Wennberg P O, Wofsy S C, Stephens B B, Fischer M L, Uchino O, Abshire J B, Bernath P, Biraud S C, Blavier J F L, Boone C, Bowman K P, Browell E V, Campos T, Connor B J, Daube B C, Deutscher N M, Diao M, Elkins J W, Gerbig C, Gottlieb E, Griffith D W T, Hurst D F, Jiménez R, Keppel-Aleks G, Kort E A, Macatangay R, Machida T, Matsueda H, Moore F, Morino I, Park S, Robinson J, Roehl C M, Sawa Y, Sherlock V, Sweeney C, Tanaka T, Zondlo M A. 2010. Calibration of the Total Carbon Column Observing Network using aircraft profile data. Atmos Meas Tech, 3: 1351–1362

    Article  Google Scholar 

  • Yang Z, Washenfelder R A, Keppel-Aleks G, Krakauer N Y, Randerson J T, Tans P P, Sweeney C, Wennberg P O. 2007. New constraints on Northern Hemisphere growing season net flux. Geophys Res Lett, 34: L12807

    Article  Google Scholar 

  • Yoshida Y, Kikuchi N, Morino I, Uchino O, Oshchepkov S, Bril A, Saeki T, Schutgens N, Toon G C, Wunch D, Roehl C M, Wennberg P O, Griffith D W T, Deutscher N M, Warneke T, Notholt J, Robinson J, Sherlock V, Connor B, Rettinger M, Sussmann R, Ahonen P, Heikkinen P, Kyrö E, Mendonca J, Strong K, Hase F, Dohe S, Yokota T. 2013. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data. Atmos Meas Tech, 6: 1533–1547

    Article  Google Scholar 

  • Yoshida Y, Ota Y, Eguchi N, Kikuchi N, Nobuta K, Tran H, Morino I, Yokota T. 2011. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the greenhouse gases observing satellite. Atmos Meas Tech, 4: 717–734

    Article  Google Scholar 

  • Yue T X. 2011. Surface Modelling: High Accuracy and High Speed Methods. New York: CRC Press

    Book  Google Scholar 

  • Yue T X, Zhao M W, Zhang X Y. 2015. A high-accuracy method for filling voids on remotely sensed XCO2 surfaces and its verification. J Cleaner Prod, 103: 819–827

    Article  Google Scholar 

  • Yue T X, Liu Y, Zhao M W, Du Z P, Zhao N. 2016. A fundamental theorem of Earth’s surface modelling. Environ Earth Sci, 75: 751

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TianXiang Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, T., Zhang, L., Zhao, M. et al. Space- and ground-based CO2 measurements: A review. Sci. China Earth Sci. 59, 2089–2097 (2016). https://doi.org/10.1007/s11430-015-0239-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-015-0239-7

Keywords

Navigation