Skip to main content
Log in

Platinum-group element geochemistry of Cenozoic basalts from the North China Craton: Implications for mantle heterogeneity

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Forty-two Cenozoic (mostly Miocene) basalt samples from Jining, Chifeng, Fansi, Xiyang, and Zuoquan areas of the North China Craton (the NCC basalts hereafter) were analyzed for platinum-group elements (PGE, including Os, Ir, Ru, Rh, Pt, and Pd). Most of them are alkaline basalts and tholeiites and all of them display little crustal contamination. The total PGE contents of the NCC basalts vary from 0.1 to 0.9 ppb, much lower than those of the primitive mantle values of 23.5 ppb. Primitive mantle-normalized PGE patterns of these basalts define positive slopes and Pd/Ir ratios vary from 1.2 to 25. In terms of both PGE contents and Pd/Ir ratios, they are quite similar to the mid-ocean ridge basalts. There are no obvious negative correlations between PGE vs. MgO, Ni, and Cu in the NCC basalts, indicating that fractional crystallization of olivine, pyroxene, and/or sulfides during magmatic process cannot be the controlling factor for the observed PGE variation. The observed Pd/Ir variations of the NCC basalts require involvement of non-chondritic heterogeneous mantle sources. Based on Sr-Nd-Pb-Hf isotopic systematics and incompatible-element signatures, a mixing of partial melts from both asthenospheric peridotites and enclosed mantle eclogites at the top of asthenosphere was proposed for the origin of these NCC basalts. The lenses of eclogites are derived from upwelling of recycled continental crust during the westward subduction of the Pacific plate from the ∼600 km discontinuity zone. The PGE geochemistry of these basalts provides independent evidence to support this conclusion and the observed Pd/Ir variations may reflect variations in proportions of tapped peridotitic and eclogitic melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alard O, Griffin W L, Lorand J P, et al. 2000. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature, 407: 891–894

    Article  Google Scholar 

  • Alard O, Luguet A, Pearson N J, et al. 2005. In situ Os isotopes in abyssal peridotites bridge the isotopic gap between MORBs and their source mantle. Nature, 436: 1005–1008

    Article  Google Scholar 

  • Aulbach S, Stachel T, Seitz H M, et al. 2012. Chalcophile and siderophile elements in sulphide inclusions in eclogitic diamonds and metal cycling in a Paleoproterozoic subduction zone. Geochim Cosmochim Acta, 93: 278–299

    Article  Google Scholar 

  • Barnes S, Naldrett A J, Gorton, et al. 1985. The origin of the fractionation of platinum-group elements in terrestrial magmas. Chem Geol, 53: 303–323

    Article  Google Scholar 

  • Barry T L, Saunders A D, Kempton P D, et al. 2003. Petrogenesis of Cenozoic basalts from Mongolia: Evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources. J Petrol, 44: 55–91

    Article  Google Scholar 

  • Bezmen N I, Asif M, Brügmann G E, et al. 1994. Distribution of Pd, Rh, Ru, Ir, Os, and Au between sulfide and silicate metals. Geochim Cosmochim Acta, 58: 1251–1260

    Article  Google Scholar 

  • Bezos A, Lorand J P, Humler E, et al. 2005. Platinum-group element systematics in Mid-Oceanic Ridge basaltic glasses from the Pacific, Atlantic, and Indian Oceans. Geochim Cosmochim Acta, 69: 2613–2627

    Article  Google Scholar 

  • Brenan J M, McDonoughb W F, Dalpé C. 2003. Experimental constraints on the partitioning of rhenium and some platinum-group elements between olivine and silicate melt. Earth Planet Sci Lett, 212: 135–150

    Article  Google Scholar 

  • Brenan J M, McDonough W F, Ash R. 2005. An experimental study of the solubility and partitioning of iridium, osmium and gold between olivine and silicate melt. Earth Planet Sci Lett, 237: 855–872

    Article  Google Scholar 

  • Brugmann G E, Naldrett A J, Asif M, et al. 1993. Siderophile and chalcophile metals as tracers of the evolution of the Siberian trap in the Noril’sk region, Russia. Geochim Cosmochim Acta, 57: 2001–2018

    Article  Google Scholar 

  • Burton K W, Gannoun A, Birk J L, et al. 2002. The compatibility of rhenium and osmium in natural olivine and their behaviour during mantle melting and basalt petrogenesis. Earth Planet Sci Lett, 198: 63–76

    Article  Google Scholar 

  • Chazey W J, Neal C R. 2005. Platinum-group element constraints on source composition and magma evolution of the Kerguelen Plateau using basalts from ODP Leg 183. Geochim Cosmochim Acta, 69: 4685–4701

    Article  Google Scholar 

  • Chen G Y, Song Z H, An C Q. 1991. Three dimensional crust and upper mantle structure of the North China region (in Chinese with English abstract). Acta Geophys Sin, 34: 172–181

    Google Scholar 

  • Chen L H, Zeng G, Jiang S Y, et al. 2009. Sources of Anfengshan basalts: Subducted lower crust in the Sulu UHP belt, China. Earth Planet Sci Lett, 286: 426–435

    Article  Google Scholar 

  • Chu X L, Li X L, Xu J H, et al. 1999. Patterns of platinum-group elements in mantle peridotite, granulite xenoliths and basalt in Hannuoba. Chin Sci Bull, 44: 1676–1681

    Article  Google Scholar 

  • Crocket J H, Fleet M E, Stone W E. 1997. Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: The significance of nickel content. Geochim Cosmochim Acta, 61: 4139–4149

    Article  Google Scholar 

  • Crocket J H, Paul D K. 2004. Platinum-group elements in Deccan mafic rocks: A comparison of suites differentiated by Ir content. Chem Geol, 208: 273–291

    Article  Google Scholar 

  • Dale C W, Luguet A, Macpherson C G, et al. 2008. Extreme platinum group element fractionation and variable Os isotope compositions in Philippine Sea Plate basalts: Tracing mantle source heterogeneity. Chem Geol, 248: 213–238

    Article  Google Scholar 

  • Du W, Han B F, Zhang W H, et al. 2006. The discovery of peridotite xenoliths and megacrysts in Jining, Inner Mongolia (in Chinese with English abstract). Acta Petrol Mineral, 25: 13–24

    Google Scholar 

  • Ely J C, Neal C R. 2003. Using platinum-group elements to investigate the origin of the Ontong Java Plateau, SW Pacific. Chem Geol, 196: 235–257

    Article  Google Scholar 

  • Fan W M, Zhang H F, Baker J, et al. 2000. On and off the North China Craton: Where is the Archaean keel? J Petrol, 41: 933–950

    Article  Google Scholar 

  • Fiorentini M L, Barnes S J, Maier W D, et al. 2011. Global variability in the platinum-group element contents of komatiites. J Petrol, 52: 83–112

    Article  Google Scholar 

  • Fleet M E, Crocket J H, Stone W E. 1996. Partitioning of platinum-group elements (Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt. Geochim Cosmochim Acta, 60: 2397–2412

    Article  Google Scholar 

  • Flower M F J, Tamaki K, Hoang N. 1998. Mantle extrusion: A model for dispersed volcanism and DUPAL-like asthenosphere in East Asia and the Western Pacific. In: Flower M F J, Chung S L, Lo C H, eds. Mantle Dynamics and Plate Interactions in East Asia. Amer Geophys Union, 27: 67–88

    Article  Google Scholar 

  • Gao S, Rudnick R L, Carlson R W, et al. 2002. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett, 198: 307–322

    Article  Google Scholar 

  • Garuti G, Oddone M, Torres Ruiz J. 1997. Platinum-group-element distribution in subcontinental mantle: Evidence from the Ivrea zone (Italy) and the Betic-Rifean cordillera (Spain and Morocco). Can J Earth Sci, 34: 444–463

    Article  Google Scholar 

  • Gréau Y, Alard O, Griffin W L, et al. 2013. Sulfides and chalcophile elements in Roberts Victor eclogites: Unravelling a sulfide-rich metasomatic event. Chem Geol, 354: 73–92

    Article  Google Scholar 

  • Gréau Y, Huang J X, Griffin W L, et al. 2011. Type I eclogites from Roberts Victor kimberlites: Products of extensive mantle metasomatism. Geochim Cosmochim Acta, 75: 6927–6954

    Article  Google Scholar 

  • González-Jiménez J M, Proenza J A, Gervilla F, et al. 2011. High-Cr and high-Al chromitites from the Sagua de Tánamo district, Mayarí-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements. Lithos, 125: 101–121

    Article  Google Scholar 

  • Griffin W L, Zhang A D, O’Reilly S Y, et al. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flower M F J, Chung S L, Lo C H, eds. Mantle Dynamics and Plate Interactions in East Asia. Amer Geophys Union, 27: 107–126

    Article  Google Scholar 

  • Griffin W L, Spetsius Z V, Pearson N J, et al. 2002. In situ Re-Os analysis of sulfide inclusions in kimberlitic olivine: New constraints on depletion events in the Siberian lithospheric mantle. Geochem Geophys Geosys, 3: 1069, doi: 10.1029/2001GC000287

    Google Scholar 

  • Griffin W L, O’Reilly S Y. 2007. Cratonic lithospheric mantle: Is anything subducted? Episodes, 30: 43–53

    Google Scholar 

  • Han B F, Wang S G, Kagami H. 1999. Trace element and Nd-Sr isotope constraints on origin of the Chifeng flood basalts, North China. Chem Geol, 155: 187–199

    Article  Google Scholar 

  • Hart S R, Ravizza G E, 1996. Os partitioning between phases in lherzolite and basalt. In: Basu A, Hart S, eds. Earth Processes: Reading the Isotopic Code. Washington: American Geophys Union Monograph, 95: 123–134

    Chapter  Google Scholar 

  • Haughton D R, Roeder P L, Skinner B J. 1974. Solubility of sulfur in mafic magmas. Econ Geol, 69: 451–467

    Article  Google Scholar 

  • Hoang N, Flower M. 1998. Petrogenesis of Cenozoic basalts from Vietnam: Implication for Origins of a ‘Diffuse Igneous Province’. J Petrol, 39: 369–395

    Article  Google Scholar 

  • Keays R R. 1982. Palladium and iridium in komatiites and associated rocks: Application to petrogenetic problems. Komatiites. In: Arndt N T, Nesbitt E G, eds. London: George Allen. 435–457

    Google Scholar 

  • Keays R R. 1995. The role of komatiitic and picritic magmatism and S-saturation in the formation of the ore deposits. Lithos, 34: 1–18

    Article  Google Scholar 

  • Li X M, Hao L B, Gan S C, et al. 2003. The analysis on the PGE anomaly and its prospecting forecasting in the Emeishan basalts (in Chinese with English abstract). J Miner Petrol, 23: 21–25

    Google Scholar 

  • Lightfoot P C,, Hawkesworth, C J. 1997. Flood basalts and magmatic Ni, Cu, and PGE sulfide mineralization: Comparative geochemistry of the Noril’sk (Siberian traps) and West Greenland sequences. In: Mahoney J J, Coffin M F, eds. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Washington D C: American Geophysical Union. 357–380

    Chapter  Google Scholar 

  • Lightfoot P C, Hawkesworth C J, Hergt J, et al. 1994. Chemostratigraphy of Siberian trap lavas, Noril’sk district, Russia: Implications for the evolution of flood basalt magmas. In: Lightfoot P C, Naldrett A J, eds. Proceedings of the Sudbury-Noril’sk Symposium. Ontario Geol Surv Spec. 283–312

    Google Scholar 

  • Lightfoot P C, Keays R R. 2005. Siderophile and Chalcophile Metal Variations in Flood Basalts from the Siberian Trap, Noril’sk Region: Implications for the Origin of the Ni-Cu-PGE Sulfide Ores. Econc Geol, 100: 439–462

    Article  Google Scholar 

  • Liu D Y, Nutman A P, Compston W, et al. 1992. Remnants of >3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 20: 339–342

    Article  Google Scholar 

  • Liu Q, Hou Q L, Zhou X H, et al. 2006. The distribution of platinum-group element in Mesozoic volcanic lavas from Fuxin: A case study of Jianguo and Wulahada (in Chinese with English abstract). Act Petrol Mineral, 25: 33–39

    Google Scholar 

  • Liu J G, Rudnick R L, Walker R J, et al. 2011. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: An example from the North China Craton. Geochim Cosmochim Acta, 75: 3881–3902

    Article  Google Scholar 

  • Liu Y S, Gao S, Kelemen P B, et al. 2008. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochim Cosmochim Acta, 72: 2349–2376

    Article  Google Scholar 

  • Luo X Q, Chen Q T. 1990. Preliminary study on geochronology for Cenozoic basalts from Inner Mongolia (in Chinese with English abstract). Act Petrol Mineral, 9: 37–46

    Google Scholar 

  • Luguet A, Pearson D G, Nowell G M, et al. 2008. Enriched Pt-Re-Os isotope systematics in plume lavas explained by metasomatic sulfides. Science, 319: 453–456

    Article  Google Scholar 

  • Ma X Y. 1989. Lithospheric Dynamic Altas of China (in Chinese). Beijing: China Cartographic Publishing House. 125

    Google Scholar 

  • Maier W D, Barnes S J, Marsh J S. 2003. The concentrations of the noble metals in Southern African flood-type basalts and MORB: Implications for petrogenesis and magmatic sulphide exploration. Contrib Mineral Petrol, 146: 44–61

    Article  Google Scholar 

  • Maier W D, Barnes S J, Waal S A. 1998. Exploration for magmatic Ni-Cu-PGE sulphide deposits: A review of recent advances in the use of geochemical tools, and their application to some South African ores. S Afr J Geol, 101: 237–253

    Google Scholar 

  • Mcdonough W F, Sun S S. 1995. The composition of the Earth. Chem Geol, 120: 223–253

    Article  Google Scholar 

  • Menzies M A, Fan W M, Zhang M. 1993. Paleozoic and Cenozoic lithoprobes and the loss of 120 km of Archean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster T, Harris N B W, et al. eds. Magmatic Processes and Plate Tectonics. London Geol Soc, 76: 71–81

    Google Scholar 

  • Momme P, Tegner C, Brooks C K, et al. 2006. Two melting regimes during Paleogene flood basalt generation in East Greenland: Combined REE and PGE modelling. Contrib Mineral Petrol, 151: 88–100

    Article  Google Scholar 

  • Momme P, Tegner C, Brooks C K, et al. 2002. The behaviour of platinum-group elements in basalts from the East Greenland rifted margin. Contrib Mineral Petrol, 143: 133–153

    Article  Google Scholar 

  • Peach C L, Mathez E A, Keays R R, 1990. Sulfide melt-silicate melt distribution coefficients for noble metals and other chalcophile elements as deduced from MORB: Implications for partial melting. Geochim Cosmochim Acta, 54: 3379–3389

    Article  Google Scholar 

  • Peach C L, Mathez E A, Keays R R, et al. 1994. Experimentally determined sulfide melt-silicate melt partition coefficients for iridium and palladium. Chem Geol, 117: 361–377

    Article  Google Scholar 

  • Philipp H, Eckhardt J D, Puchelt H. 2001. Platinum-group elements (PGE) in basalts of the seaward-dipping reflector sequence, SE Greenland Coast. J Petrol, 42: 407–432

    Article  Google Scholar 

  • Rehkämper M, Halliday A N, Fitton J G, et al. 1999. Ir, Ru, Pt, and Pd in basalts and komatiites: New constraints for the geochemical behavior of the platinum-group elements in the mantle. Geochim Cosmochim Acta, 63: 3915–3934

    Article  Google Scholar 

  • Righter K, Campbell A J, Humayun M, et al. 2004. Partitioning of Re Au Pd Ir Rh and Ru between Cr-bearing spinel olivine pyroxene and silicate melts. Geochim Cosmochim Acta, 68: 867–880

    Article  Google Scholar 

  • Roy-Barmen M, Wasserburg G J, Papanatassiou D A, et al. 1998. Osmium isotopic compositions and Re-Os concentrations in sulfide globules from basaltic glasses. Earth Planet Sci Lett, 154: 331–347

    Article  Google Scholar 

  • Rudnick R L, Gao S. 2003. Composition of the continental crust. In: Rudnick R L, ed. The Crust. In: Holland H D, Turekian K K, eds. Treatise on Geochemistry. Oxford: Elsevier-Pergamon. 1–64

    Google Scholar 

  • Sharpe M R. 1982. Noble metals in the marginal rocks of the Bushveld Complex. Econ Geol, 77: 1286–1295

    Article  Google Scholar 

  • Song X Y, Zhou M F, Cao Z M. 2004. Genetic relationships between base-metal sulfides and platinum-group minerals in the Yangliuping Ni-Cu-(PGE) sulfide deposit, southwestern China. Can Mineral, 42: 469–483

    Article  Google Scholar 

  • Sobolev A V, Hofmann A W, Kuzmin D V, et al., 2007. The amount of recycled crust in sources of mantle derived melts. Science, 316: 412–417

    Article  Google Scholar 

  • Stone W E, Crocket J H, Fleet M E. 1990. Partitioning of palladium, iridium, platinum, and gold between sulfide liquid and basalt melt at 1200°C. Geochim Cosmochim Acta, 54: 2341–234

    Article  Google Scholar 

  • Sun Y L, Guan X Y, Du A D. 1998. Determination of platinum group elements by inductively coupled plasma-mass spectrometry combined with nickel sulfide fire assay and tellurium cooperation. Spectro Chimica Acta, 53: 1463–1467

    Article  Google Scholar 

  • Sun Y L, Sun M. 2005. Nickel sulfide fire assay improved for pre-concentration of platinum group elements in geological samples: A practical means of ultra-trace analysis combined with inductively coupled plasma-mass spectrometry. Analyst, 130: 664–669

    Article  Google Scholar 

  • Sun Y L, Chu Z Y, Sun M, et al. 2009. An improved Fe-Ni sulfide fire assay method for determination of Re, platinum group elements, and Os isotopic ratios by inductively coupled plasma- and negative thermal ionization-mass spectrometry. Appl Spectrosc, 63: 1232–1237

    Article  Google Scholar 

  • Tang Y J, Zhang H F, Ying J F. 2006. Asthenosphere-litho spheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chem Geol, 233: 309–327

    Article  Google Scholar 

  • Tatsumi Y, Oguri K, Shimoda G, 1999. The behavior of platinum-group elements during magmatic differentiation in Hawaiian tholeiites. Geochem J, 33: 237–247

    Article  Google Scholar 

  • Yang J H, Wu F Y, Wilde S A. 2003. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China Craton: An association with lithospheric thinning. Ore Geol Rev, 23: 125–152

    Article  Google Scholar 

  • Yin A, Nie S. 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions. In: Yin A, Mark H, eds. The Tectonic Evolution of Asia. Cambrigdge: Cambrigdge University Press. 495

    Google Scholar 

  • Zeng G, Chen L H, Hofmann A W, et al. 2011. Crust recycling in the sources of two parallel volcanic chains in Shandong, North China. Earth Planet Sci Lett, 302: 359–368

    Article  Google Scholar 

  • Zhang G L, Zong C L, Yin X B, et al. 2012. Geochemical constraints on a mixed pyroxenite-peridotite source for East Pacific Rise basalts. Chem Geol, 330–331: 176–187

    Article  Google Scholar 

  • Zhang H F, Goldstein S L, Zhou X H, et al. 2008. Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in paleozoic kimberlites and mesozoic basalts. Contrib Mineral Petrol, 155: 271–293

    Article  Google Scholar 

  • Zhang H F, Sun M, Zhou X H, et al. 2002. Mesozoic lithosphere destruction beneath the North China craton: Evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 144: 241–253

    Article  Google Scholar 

  • Zhang M, O’Reilly S Y, Wang K L, et al. 2008. Flood basalts and metallogeny: The lithospheric mantle connection. Earth-Sci Rev, 86: 145–174

    Article  Google Scholar 

  • Zhang W H, Han B F. 2006. K-Ar Chronology and Geochemistry of Jining Cenozoic basalts, Inner Mongolia, and geodynamic Implications (in Chinese with English abstract). Acta Petrol Sin, 22: 1597–1607

    Google Scholar 

  • Zhang W H, Han B F, Du W, et al. 2005. Characteristics of mantle source for Jining Cenozoic basalts from southern Inner Mongolia: Evidence from element and Sr-Nd-Pb isotopic geochemistry (in Chinese with English abstract). Acta Petrol Sin, 21: 1569–1582

    Google Scholar 

  • Zhang W H, Zhang H F, Fan W M, et al. 2012. The genesis of Cenozoic basalts from the Jining area, northern China: Sr-Nd-Pb-Hf isotope evidence. J Asian Earth Sci, 61: 128–142

    Article  Google Scholar 

  • Zhang Z C, Mao J W, Mahoney J J, et al. 2005. Platinum group elements in the Emeishan large igneous province, SW China: Implications for mantle sources. Geochem J, 39: 371–382

    Article  Google Scholar 

  • Zhao D P. 2012. Tomography and dynamics of Western-Pacific subduction zones. Monogr Environ. Earth Planets 1, 1–70

    Article  Google Scholar 

  • Zhao G C, Sun M, Wilde S A. 2003. Major tectonic units of the North China Craton and their Paleoproterozoic assembly. Sci China Ser D-Earth Sci, 46: 23–38

    Article  Google Scholar 

  • Zhao G C, Wilde S A, Cawood P A, et al. 2001. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res, 107: 45–73

    Article  Google Scholar 

  • Zhong H, Zhou X H, Zhou M F, et al. 2002. Platinum-group element geochemistry of the Hongge Fe-V-Ti deposit in the Pan-Xi area, southwestern China. Miner Deposita, 37: 226–239

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenHui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, H., Sun, Y. et al. Platinum-group element geochemistry of Cenozoic basalts from the North China Craton: Implications for mantle heterogeneity. Sci. China Earth Sci. 58, 881–895 (2015). https://doi.org/10.1007/s11430-014-5047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-5047-5

Keywords

Navigation