Skip to main content
Log in

Estimation of atmospheric predictability for multivariable system using information theory in nonlinear error growth dynamics

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

To estimate atmospheric predictability for multivariable system, based on information theory in nonlinear error growth dynamics, a quantitative method is introduced in this paper using multivariable joint predictability limit (MJPL) and corresponding single variable predictability limit (SVPL). The predictability limit, obtained from the evolutions of nonlinear error entropy and climatological state entropy, is not only used to measure the predictability of dynamical system with the constant climatological state entropy, but also appropriate to the case of climatological state entropy changed with time. With the help of daily NCEP-NCAR reanalysis data, by using a method of local dynamical analog, the nonlinear error entropy, climatological state entropy, and predictability limit are obtained, and the SVPLs and MJPL of the winter 500-hPa temperature field, zonal wind field and meridional wind field are also investigated. The results show that atmospheric predictability is well associated with the analytical variable. For single variable predictability, there exists a big difference for the three variables, with the higher predictability found for the temperature field and zonal wind field and the lower predictability for the meridional wind field. As seen from their spatial distributions, the SVPLs of the three variables appear to have a property of zonal distribution, especially for the meridional wind field, which has three zonal belts with low predictability and four zonal belts with high predictability. For multivariable joint predictability, the MJPL of multivariable system with the three variables is not a simple mean or linear combination of its SVPLs. It presents an obvious regional difference characteristic. Different regions have different results. In some regions, the MJPL is among its SVPLs. However, in other regions, the MJPL is less than its all SVPLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramov R, Majda A, Kleeman R. 2005. Information theory and predictability for low-frequency variability. J Atmos Sci, 62: 65–87

    Article  Google Scholar 

  • Chen B H, Li J P, Ding R Q. 2006. Nonlinear local Lyapunov exponent and atmospheric predictability research. Sci China Ser D-Earth Sci, 49: 11430–11436

    Google Scholar 

  • Cover T M, Thomas J A. 2006. Elements of Information Theory. 2nd ed. NewYork: John Wiley. 1–12

    Google Scholar 

  • DelSole T, Tippett M K. 2007. Predictability: Recent insights from information theory. Rev Geophys, 45: RG4002, doi: 10.1029/2006RG000202

    Google Scholar 

  • DelSole T. 2004. Predictability and information theory. Part I: Measure of predictability. J Atmos Sci, 61: 2425–2440

    Article  Google Scholar 

  • DelSole T. 2005. Predictability and information theory. Part II: Imperfect Forecast. J Atmos Sci, 61: 3368–3381

    Article  Google Scholar 

  • Ding R Q, Li J P, Ha K J. 2008a. Nonlinear local Lyapunov exponent and quantification of local predictability. Chin Phys Lett, 25: 1919–1922

    Article  Google Scholar 

  • Ding R Q, Li J P. 2008b. Comparison of the influences of initial error and model parameter error on the predictability of numerical forecast (in Chinese). Chin J Geophys, 51: 1007–1012

    Article  Google Scholar 

  • Ding R Q, Li J P, Ha K J. 2008c. Trends and interdecadal changes of weather predictability during 1950s–1990s. J Geophys Res, 113: D24112, doi: 10.1029/2008JD010404

    Article  Google Scholar 

  • Ding R Q, Li J P. 2007. Nonlinear finite-time Lyapunov exponent and predictability. Phys Lett A, 364: 396–400

    Article  Google Scholar 

  • Ding R Q, Li J P. 2009a. Application of nonlinear error growth dynamics in studies of atmospheric predictability (in Chinese). Acta Meteor Sin, 67: 241–249

    Google Scholar 

  • Ding R Q, Li J P. 2009b. The temporal-spatial distributions of weather predictability of different variables (in Chinese). Acta Meteor Sin, 67: 343–354

    Google Scholar 

  • Ding R Q, Li J P. 2011a. Comparisons of two ensemble mean methods in measuring the average error growth and the predictability. Acta Meteor Sin, 25: 395–404

    Article  Google Scholar 

  • Ding R Q, Li J P. 2011b. Estimate of the predictability of boreal summer and winter intraseasonal oscillations from observations. Mon Weather Rev, 139: 2421–2438

    Article  Google Scholar 

  • Duan W S, Mu M. 2009a. Conditional nonlinear optimal perturbation: applications to stability, sensitivity, and predictability. Sci China Ser D-Earth Sci, 52: 883–906

    Article  Google Scholar 

  • Duan W S, Liu X, Zhu K, et al. 2009b. Exploring the initial error that causes a significant spring predictability barrier for El Nino events. J Geophy Res, 114: C04022, doi: 10.1029/2008JC004925

    Google Scholar 

  • Duan W S, Zhang R. 2010. Is model parameter error related to spring predictability barrier for El Nino events?. Adv Atmos Sci, 27: 1003–1013

    Article  Google Scholar 

  • Duan W S, Yu Y S, Xu H, et al. 2013a. Behaviors of nonlinearities modulating the El Niño events induced by optimal precursory disturbance. Clim Dyn, 40: 1399–1413, doi: 10.1007/s00382-012-1557-z

    Article  Google Scholar 

  • Duan W S, Wei C. 2013b. The ‘spring predictability barrier’ for ENSO predictions and its possible mechanism: Results from a fully coupled model. Int J Climatol, 33: 1280–1292, doi: 10.1002/joc.351

    Article  Google Scholar 

  • Duan W S, Zhou F. 2013. Nonlinear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus-A, 65: 18452

    Article  Google Scholar 

  • Kleeman R. 2002. Measuring dynamical prediction utility using relative entropy. J Atmos Sci, 59: 2057–2072

    Article  Google Scholar 

  • Kullback S, Leibler R A. 1951. On information and sufficiency. Ann Math Stat, 22: 79–86

    Article  Google Scholar 

  • Leung L Y, North G R. 1990. Information theory and climate prediction. J Clim, 3: 5–14

    Article  Google Scholar 

  • Li A B, Zhang L F, Wang Q L, et al. 2013. Information theory in nonlinear error growth dynamics and its application to predictability: Taking the Lorenz system as an example. Sci China Earth Sci, 56: 1413–1421

    Article  Google Scholar 

  • Li J P, Ding R Q, Chen B H. 2006. Review and prospect on the predictability study of the atmosphere (in Chinese). In: National Natural Science Foundation Committee, ed, Review and Prospects of the Developments of Atmosphere Science in Early 21st Century. Beijing: China Meteorology Press. 96–103

    Google Scholar 

  • Li J P, Ding R Q. 2008. Temporal-spatial distribution of predictability limit of short-term climate (in Chinese). Chin J Atmos Sci, 32: 975–986

    Google Scholar 

  • Li J P, Ding R Q. 2011. Tempeoral-spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon Weather Rev, 139: 3265–3283

    Article  Google Scholar 

  • Li J P, Ding R Q. 2012. Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans. Int J Climatol, doi: 10.1002/joc.3562

    Google Scholar 

  • Li J P, Zeng Q C, Chou J F. 2000. Computational uncertainty principle in nonlinear ordinary differential equations I: Numerical results. Sci China Ser E, 43: 449–460

    Article  Google Scholar 

  • Li J P, Zeng Q C, Chou J F. 2001. Computational uncertainty principle in nonlinear ordinary differential equations II: Theoretical analysis. Sci China Ser E, 44: 55–74

    Article  Google Scholar 

  • Lorenz E N. 1982. Atmospheric predictability experiments with a large numerical model. Tellus, 34: 505–513

    Article  Google Scholar 

  • Mu M, Duan W S, Wang B. 2003a. Conditional nonlinear optimal perturbation and its applications. Nonlinear Process Geophys, 10: 493–501

    Article  Google Scholar 

  • Mu M, Duan W S, Wang J C. 2002. The predictability problems in numerical weather and climate prediction. Adv Atmos Sci, 19: 191–204

    Article  Google Scholar 

  • Mu M, Duan W S. 2003b. A new approach to studying ENSO predictability: Conditional nonlinear optimal perturbation. Chin Sci Bull, 48: 1045–1047

    Article  Google Scholar 

  • Mu M, Duan W S. 2005. Conditional nonlinear optimal perturbation and its application to the studies of weather and climate predictability. Chin Sci Bull, 50: 2401–2407

    Article  Google Scholar 

  • Mu M, Duan W, Wang Q, et al. 2010. An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Process Geophys, 12: 211–220

    Article  Google Scholar 

  • Mu M, Jiang Z N. 2008. A new approach to the generation of initial perturbations for ensemble prediction: Condition nonlinear optimal perturbation. Chin Sci Bull, 53: 2062–2068

    Article  Google Scholar 

  • Mu M, Zhou F F, Wang H L. 2009. A method to identify the sensitive areas in targeting for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon Weather Rev, 137: 1623–1639

    Article  Google Scholar 

  • Reichler T, Roads J O. 2004. Time-space distribution of long-Rang Atmospheric predictability. J Atmos Sci, 61: 249–263

    Article  Google Scholar 

  • Roulston M, Smith L. 2002. Evaluating probabilistic forecasts using information theory. Mon Weather Rev, 130: 1653–1660

    Article  Google Scholar 

  • Schneider T, Griffies S M. 1999. A conceptual framework for predictability studies. J Clim, 12: 3133–3155

    Article  Google Scholar 

  • Tang Y M, Lin H, Derome J, et al. 2007. A predictability measure applied to seasonal predictions of the Arctic Oscillation. J Clim, 20: 4733–4750

    Article  Google Scholar 

  • Tang Y M, Lin H, Moore A M. 2008. Measuring the potential predictability of ensemble climate predictions. J Geophys Res, 113: D04108, doi: 10.1029/2007JD008804

    Google Scholar 

  • Yang X Q, Anderson J L, Stern W F. 1998. Reproducible forced modes in AGCM ensemble integration and potential predictability of atmospheric seasonal variations in the extratropics. J Clim, 11: 2942–2959

    Article  Google Scholar 

  • Yu Y, Mu M, Duan W. 2012. Does model parameter error cause a significant “Spring Predictability Barrier” for El Niño events in the Zebiak-Cane Model?. J Clim, 25: 1263–1277

    Article  Google Scholar 

  • Ziehmann C, Smith L, Kurths J. 2000. Localized lyapunov exponents and prediction of predictability. Phys Lett A, 271: 237–251

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiFeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Zhang, L. & Wang, Q. Estimation of atmospheric predictability for multivariable system using information theory in nonlinear error growth dynamics. Sci. China Earth Sci. 57, 1907–1918 (2014). https://doi.org/10.1007/s11430-014-4823-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-014-4823-6

Keywords

Navigation