Skip to main content
Log in

A general thermodynamic analysis and treatment of phases and components in the analysis of phase assemblages in multicomponent systems

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Systematic thermodynamic analysis reveals that an essential condition for the thermodynamically valid chemographic projections proposed by Greenwood is completely excessive. In other words, the phases or components from which the projection is made need not be pure, nor have their chemical potentials fixed over the whole chemographic diagram. To facilitate the analysis of phase assemblages in multicomponent systems, all phases and components in the system are divided into internal and external ones in terms of their thermodynamic features and roles, where the external phases are those common to all assemblages in the system, and the external components include excess components and the components whose chemical potentials (or relevant intensive properties of components) are used to define the thermodynamic conditions of the system. This general classification overcomes the difficulties and defects in the previous classifications, and is easier to use than the previous ones. According to the above classification, the phase rule is transformed into a new form. This leads to two findings: (1) the degree of freedom of the system under the given conditions is only determined by the internal components and phases; (2) different external phases can be identified conveniently according to the conditions of the system before knowing the real phase relations. Based on the above results, a simple but general approach is proposed for the treatment of phases and components: all external phases and components can be eliminated from the system without affecting the phase relations, where the external components can be eliminated by appropriate chemographic projections. The projections have no restriction on the states of the phases or the chemical potentials of components from which the projections are made. The present work can give a unified explanation of the previous treatments of phases and components in the analysis of phase assemblages under various specific conditions. It helps to avoid potential misunderstandings or errors in the topological analysis of phase relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korzhinskii D S. Physicochemical Basis of the Analysis of the Paragenesis of Minerals. New York: Consultants Bureau Inc, 1959

    Google Scholar 

  2. Thompson J B J. The graphical analysis of mineral assemblages of pelitic schists. Amer Mineral, 1957, 42: 842–858

    Google Scholar 

  3. Greenwood H J. Thermodynamically valid projections of extensive phase relations. Amer Mineral, 1975, 60: 1–8

    Google Scholar 

  4. Fitzsimons I C W. Metapelitic migmatites from Brattstrand Bluffs, east Antarctica—Metamorphism, melting, and exhumation of the mid-crust. J Petrol, 1996, 37: 395–414

    Article  Google Scholar 

  5. Longhi J. Comparative liquidus equilibria of hypersthene-normative basalts at low pressure. Amer Mineral, 1991, 76: 785–800

    Google Scholar 

  6. Thompson J B J. Local equilibrium in metasomatic processes. In: Abelson P H, ed. Researches in Geochemistry. New York: John Wiley and Sons, 1959. 427–457

    Google Scholar 

  7. Zen E A. Components, phases, and criteria of chemical equilibrium in rocks. Amer J Sci, 1963, 261: 929–942

    Article  Google Scholar 

  8. Thompson J B J. Geochemical reaction and open systems. Geochim Cosmochim Acta, 1970, 34: 529–551

    Article  Google Scholar 

  9. Rumble III D. The role of perfectly mobile components in metamorphism. Ann Rev Earth Planet Sci, 1982, 109: 221–233

    Article  Google Scholar 

  10. Weill D F, Fyfe W S. A discussion of the Korzhinskii and Thompson treatment of thermodynamic equilibrium in open systems. Geochim Cosmochim Acta, 1964, 28: 565–576

    Article  Google Scholar 

  11. Korzhinskii D S. On thermodynamics of open systems and the phase rule (A reply to D. F. Weill and W. S. Fyfe). Geochim Cosmochim Acta, 1966, 30: 829–835

    Article  Google Scholar 

  12. Weill D F, Fyfe W S. On equilibrium thermodynamics of open systems and the phase rule (A reply to D. S. Korzhinskii). Geochim Cosmochim Acta, 1967, 31: 1167–1176

    Article  Google Scholar 

  13. Korzhinskii D S. On thermodynamics of open systems and the phase rule (A reply to the second critical paper of D. F. Weill and W. S. Fyfe). Geochim Cosmochim Acta, 1967, 31: 1177–1180

    Article  Google Scholar 

  14. Burt D M. Multisystem analysis of beryllium mineral stabilities: The system BeO-Al2O3-SiO2-H2O. Amer Mineral, 1978, 63: 664–676

    Google Scholar 

  15. Liu J Z, Qiang X K, Liu X S, et al. Dynamics and genetic grids of sapphirine-brearing spinel gneiss in Daqing Mountain in orogen zone, Inner Mongolia. Acta Petrol Sin, 2000, 16: 245–255

    Google Scholar 

  16. Abbott R N J. Muscovite-bearing granites in the AFM liquidus projection. Can Mineral, 1985, 23: 553–561

    Google Scholar 

  17. Abbott R N J. A petrogenetic grid for medium and high grade metabasites. Amer Mineral, 1982, 67: 865–876

    Google Scholar 

  18. Thompson J B J, Algor J R. Model systems for anatexis of pelitic rocks. I. Theory of melting reactions in the system KAlO2-NaAlO2-Al2O3-SiO2-H2O. Contrib Mineral Petrol, 1977, 63: 247–269

    Article  Google Scholar 

  19. Bromiley G D, Pawley A R. The stability of antigorite in the systems MgO-SiO2-H2O (MSH) and MgO-Al2O3-SiO2-H2O (MASH): The effects of Al3+ substitution on high-pressure stability. Amer Mineral, 2003, 88: 99–108

    Google Scholar 

  20. Carman J H. Synthetic sodium phlogopite and its two hydrates: Stabilities, properties and mineralogic implications. Amer Mineral, 1974, 59: 261–273

    Google Scholar 

  21. Fleming P D, Fawcett F J. Upper stability of chlorite+quartz in the system MgO-FeO-Al2O3-SiO2-H2O at 2 kbar water pressure. Amer Mineral, 1976, 61: 1175–1193

    Google Scholar 

  22. Molina J F, Poli S. Singular equilibria in paragonite blueschists, amphibolites and eclogites. J Petrol, 1998, 39: 1325–1346

    Article  Google Scholar 

  23. Wei C J, Powell R, Clarke G L. Calculated phase equilibria for low- and medium-pressure metapelites in the KFMASH and KMnFMASH systems. J Metamorph Geol, 2004, 22: 495–508

    Article  Google Scholar 

  24. Yang J J, Powell R. Calculated phase relations in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O with applications to UHP eclogites and whiteschists. J Petrol, 2006, 47: 2047–2071

    Article  Google Scholar 

  25. Das K, Dasgupta S, Miura H. Stability of osumilite coexisting with spinel solid solution in metapelitic granulites at high oxygen fugacity. Amer Mineral, 2001, 86: 1423–1434

    Google Scholar 

  26. Das K, Dasgupta S, Miura H. An experimentally constrained petrogenetic grid in the silica-saturated portion of the system KFMASH at high temperatures and pressures. J Petrol, 2003, 44: 1055–1075

    Article  Google Scholar 

  27. Greenfield J E, Clarke G L, White R W. A sequence of partial melting reactions at Mt Stafford, central Australia. J Metamorph Geol, 1998, 16: 363–378

    Article  Google Scholar 

  28. Yang J J, Powell R. Ultrahigh-pressure garnet peridotites from the devolatilization of sea-floor hydrated ultramafic rocks. J Metamorph Geol, 2008, 26: 695–716

    Article  Google Scholar 

  29. Wei C, Powell R. Phase relations in high-pressure metapelites in the system KFMASH (K2O-FeO-MgO-Al2O3-SiO2-H2O) with application to natural rocks. Contrib Mineral Petrol, 2003, 145: 301–315

    Article  Google Scholar 

  30. Wei C, Powell R. Calculated phase relations in the system NCKFMASH (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) for high-pressure metapelites. J Petrol, 2006, 47: 385–408

    Article  Google Scholar 

  31. Wei C, Wang W, Clarke G L, et al. Metamorphism of high/ultrahigh-pressure pelitic-felsic schist in the southTianshan orogen, NW China: Phase equilibria and P-T path. J Petrol, 2009, 50: 1973–1991

    Article  Google Scholar 

  32. Ranson W A. Margarite-corundum phyllites from the Appalachian orogen of South Carolina: Mineralogy and metamorphic history. Amer Mineral, 2000, 85: 1617–1624

    Google Scholar 

  33. Burt D M. Some phase equilibria in the system Ca-Fe-Si-C-O. Carnegie Institution of Washington Year Book, 1971, 70: 178–184

    Google Scholar 

  34. London D, Burt D M. Chemical models for lithium aluminosilicate stabilities in pegmatites and granites. Amer Mineral, 1982, 67: 494–509

    Google Scholar 

  35. Guo Q, Wang S. The stability of laihunite—A thermodynamic re-analysis. Sci Sin Ser B, 1988, 31: 1515–1528

    Google Scholar 

  36. Chen Y, Ye K, Liu J B, et al. Quantitative P-T-X constraints on orthopyroxene-bearing high-pressure granulites in felsic-metapelitic rocks: evidence from the Huangtuling granulite, Dabieshan Orogen. J Metamorph Geol, 2008, 26: 1–15

    Google Scholar 

  37. Rice J M. Petrology of clintonite-bearing marbles in the Boulder aureole, Montana. Amer Mineral, 1979, 64: 519–526

    Google Scholar 

  38. Burt D M. Multisystem analysis of the relative stabilities of babingtonite and ilvaite. Carnegie Institution of Washington Year Book, 1971, 70: 189–197

    Google Scholar 

  39. Burt D M. Beryllium mineral stabilities in the model system CaO-BeO-SiO2-P2O5-F2O-1 and the breakdown of beryl. Econ Geol, 1975, 70: 1279–1292

    Article  Google Scholar 

  40. Ferry J M. A map of chemical potential differences within an outcrop. Amer Mineral, 1979, 64: 966–985

    Google Scholar 

  41. White R W, Powell R, Baldwin J A. Calculated phase equilibria involving chemical potentials to investigate the textural evolution of metamorphic rocks. J Metamorph Geol, 2008, 26: 181–198

    Article  Google Scholar 

  42. Sang S H, Peng J. (Solid + liquid) equilibria in the quinary system Na+, Mg2+, K+//SO 2−4 , B4O 7−4 -H2O at 288 K. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2010. 64–67

  43. Huang X L, Song P S, Chen L J, et al. Liquid-solid equilibria in quinary system Na+, Mg2+/Cl, SO 2−4 , NO3/−-H2O at 298.15 K. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2008. 188–194

  44. Song P, Yao Y. Thermodynamics and phase diagram of the salt lake brine system at 298.15 K: V. Model for the system Li+, Na+, K+, Mg2+/Cl, SO 2−4 -H2O and its applications. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 2003. 343–352

  45. Sang S H, Yin H A, Tang M L, et al. (Liquid + Solid) Phase equilibria in quaternary system Na2CO3+K2B4O7+K2CO3+Na2B4O7+H2O at 288 K. J Chem Eng Data, 2004, 49: 1775–1777

    Article  Google Scholar 

  46. Niu Z, Cheng F, Li B, et al. The Phase Diagrams of Salt-water Systems and Their Applications (in Chinese). Tianjin: Tianjin University Press, 2002

    Google Scholar 

  47. Thompson J B J. The thermodynamic basis for the mineral facies concept. Amer J Sci, 1955, 253: 65–103

    Article  Google Scholar 

  48. Zen E A. Mineralogy and petrology of the system Al2O3-SiO2-H2O in some pyrophyllite deposits of North Carolina. Amer Mineral, 1961, 46: 52–66

    Google Scholar 

  49. Harvie C E, Weare J H. The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-Cl-SO4-H2O system from zero to high concentration at 25°C. Geochim Cosmochim Acta, 1980, 44: 981–997

    Article  Google Scholar 

  50. Ellis D E, Wyllie P J. Phase relations and their petrological implications in the system MgO-SiO2-H2O-CO2 at pressures up to100 kbar. Amer Mineral, 1980, 65: 540–556

    Google Scholar 

  51. Ferry J M, Baumgartner L. Thermodynamic models of molecular fluids at the elevated pressures and temperatures of crustal metamorphism. Rev Mineral, 1987, 17: 323–365

    Google Scholar 

  52. Yardley B W D, Barber J P. Melting reactions in the Connemara schists: The role of water infiltration in the formation of amphibolite facies migmatites. Amer Mineral, 1991, 76: 848–856

    Google Scholar 

  53. Baldwin J A, Powell R, Brown M, et al. Modeling of mineral equilibria in ultrahigh-temperature metamorphic rocks from the Anapolis-Itaucu Complex, central Brazil. J Metamorph Geol, 2005, 23: 511–531

    Article  Google Scholar 

  54. Johnson T E, Hudson N F C, Droop G T R. Partial melting in the Inzie Head gneisses: The role of water and a petrogenetic grid in KFMASH applicable to anatectic pelitic migmatites. J Metamorph Geol, 2001, 19: 99–118

    Article  Google Scholar 

  55. Chatterjee N D. Margarite stability and compatibility relations in the system CaO-Al2O3-SiO2-H2O as a pressure-temperature indicator. Amer Mineral, 1976, 61: 699–709

    Google Scholar 

  56. Worley B, Powell R. Singularities in NCKFMASH (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O). J Metamorph Geol, 1998, 16: 169–188

    Article  Google Scholar 

  57. Barton M D. Phase equilibria and thermodynamic properties of minerals in the BeO-Al2O3-SiO2-H2O (BASH) system with petrologic application. Amer Mineral, 1986, 71: 277–300

    Google Scholar 

  58. Hu J W, Mao S D, Du G Q, et al. A new thermodynamic analysis of the intergrowth of hedenbergite and magnetite with Ca-Fe-rich olivine. Amer Mineral, 2011, 96: 599–608

    Article  Google Scholar 

  59. Lindsley D H, Speidel D H, Nafziger R H. P-T-f(O2) relations for the system Fe-O-SiO2. Amer J Sci, 1968, 266: 342–360

    Article  Google Scholar 

  60. Ehlers E G. The Interpretation of Geological Phase Diagrams, San Francisco: W. H. Freeman and Company, 1972

    Google Scholar 

  61. Andrievskaya E R, Lopato L M. Phase equilibria during the solidification of alloys of the ternary system HfO2-Y2O3-La2O3. Powder Metall Metal Ceramics, 2002, 41: 609–619

    Article  Google Scholar 

  62. Andrievskaya E R, Lopato L M. Approximating the liquidus surface of the ZrO2-Y2O3-La2O3 phase equilibrium diagram with reduced polynomials. Powder Metall Metal Ceramics, 2000, 39: 444–450

    Google Scholar 

  63. Linnen R L, Williams-Jones A E. The evolution of pegmatite-hosted Sn-W mineralization at Nong Sua, Thailand: Evidence from fluid inclusions and stable isotopes. Geochim Cosmochim Acta, 1994, 58: 735–747

    Article  Google Scholar 

  64. Grapes R. Anthropogenic Pyrometamorphism Pyrometamorphism. Chapter 6. Berlin: Springer-Verlag Berlin Heidelberg, 2006. 191–218

    Google Scholar 

  65. Grant J A. Quartz-phlogopite-liquid equilibria and origins of charnockites. Amer Mineral, 1986, 71: 1071–1075

    Google Scholar 

  66. Lee W J, Wyllie P J, Rossman G R. CO2-rich glass, round calcite crystals, and no liquid immiscibility in the system CaO-SiO2-CO2 at 2.5 GPa. Amer Mineral, 1994, 79: 1135–1144

    Google Scholar 

  67. Huang W L, Wyllie P J, Nehru C E. Subsolidus and liquidus phase relationships in the system CaO-SiO2-CO2 to 30 kbar with geological applications. Amer Mineral, 1980, 65: 285–301

    Google Scholar 

  68. Hu J W, Yin H A, Tang M L. A simple, universal theory and method for computer-plotting of phase diagrams of a multisystem—SFM method. Sci China Ser B-Chem, 2000, 43: 219–224

    Article  Google Scholar 

  69. Hillert M. Phase Equilibria, Phase Diagrams and Phase Transformations—Their Thermodynamic Basis. Cambridge: Cambridge University Press, 2008

    Google Scholar 

  70. McDade P, Harley S L. A petrological grid for aluminous granulite facies metapelites in the KFMASH system. J Metamorph Geol, 2001, 19: 45–59

    Article  Google Scholar 

  71. Thompson J B J. Composition space: An algebraic and geometric approach. In: Ferry J M, ed. Characterization of Metamorphism through Mineral Equilibria. Rev Mineral, 1982, 10: 1–31

  72. Brown T H, Berman R G. PTA-SYSTEM: A Ge0-Calc software package for the calculation and display of activity-temperature-pressure phase diagrams. Amer Mineral, 1989, 74: 485–487

    Google Scholar 

  73. Krot A N, Petaev M I, Zolensky M E, et al. Secondary calcium-iron-rich minerals in the Bali-like and Allende-like oxidized CV3 chondrites and Allende dark inclusions. Meteor Planet Sci, 1998, 33: 623–645

    Article  Google Scholar 

  74. Bowers T S, Burns R G. Activity diagrams for clinoptilolite: Susceptibility of this zeolite to further diagenetic reactions. Amer Mineral, 1990, 75: 601–619

    Google Scholar 

  75. Bowers T S. Equilibrium Activity Diagrams: For Coexisting Mineral and Aqueous Solutions at Pressures and Temperatures to 5 kb and 600°C, New York: Springer-Verlag, 1984

    Google Scholar 

  76. Burt D M. Vectors, components, and minerals. Amer Mineral, 1991, 76: 1033–1037

    Google Scholar 

  77. Greenwood H J. The N-dimensional tie-line problem. Geochim Cosmochim Acta, 1967, 31: 465–490

    Article  Google Scholar 

  78. Spear F S. Thermodynamic projection and extrapolation of high-variance mineral assemblages. Contrib Miner Petrol, 1988, 98: 346–351

    Article  Google Scholar 

  79. Harvie C E, Eugster H P, Weare J H. Mineral equilibria in the six-component seawater system, Na-K-Mg-Ca-SO4-Cl-H2O at 25°C. II. Comparisons of the saturated solutions. Geochim Cosmochim Acta, 1982, 46: 1603–1618

    Article  Google Scholar 

  80. Thompson J B J. Reaction space: An algebraic and geometric approach. In: Ferry J M, ed. Characterization of Metamorphism Through Mineral Equilibria. Rev Mineral, 1982, 10: 33–52

  81. Schreinemakers F A H. In-, mono-, and divariant equilibria I. In: Proceedings of Koninklijke Akademie van Wetentschappen te Amsterdam. Amsterdam, 1915. 116–126

  82. Zen E A. Construction of pressure-temperature diagrams for multicomponent systems after the method of Schreinemakers: A geometric approach. US Geol Sur Bull, 1966, 1225: 1–56

    Google Scholar 

  83. Yin H A, Hu J W, Tang M L, et al. The Phase Diagrams of Multisystems (in Chinese). Beijing: Peking University Press, 2002

    Google Scholar 

  84. Hu J, Yin H, Duan Z. A new method for the derivation of the closed nets in the phase diagram space of multisystem. I. The absent phase substitution method. J Metamorph Geol, 2004, 22: 413–425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaWen Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J. A general thermodynamic analysis and treatment of phases and components in the analysis of phase assemblages in multicomponent systems. Sci. China Earth Sci. 55, 1371–1382 (2012). https://doi.org/10.1007/s11430-011-4340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-011-4340-9

Keywords

Navigation