Skip to main content
Log in

Empfehlungen zur Ernährung von Personen mit Typ-1-Diabetes mellitus

Dietary recommendations for persons with type 1 diabetes mellitus

  • DDG Praxisempfehlungen
  • Published:
Der Diabetologe Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ADI:

„Acceptable daily intake“

CGM:

Kontinuierliche Glukosemessung

EFSA:

„European Food Safety Authority“

EN:

Energierichtwert

GI:

Glykämischer Index

iscCGM:

„Intermittent-scanning CGM“

MNA:

„Mini nutritional assessment“

n‑9-RCFA:

„Red cell phospholipid fatty acids“

rtCGM:

„Real-time CGM“

T1Dm:

Typ-1-Diabetes mellitus

Literatur

Verwendete Literatur

  1. Toeller M (2005) Evidence of nutrition in the treatment and prevention of diabetes mellitus. Aktuel Ernahrungsmed 30:197–203

    Article  Google Scholar 

  2. Beck J, Greenwood DA, Blanton L et al (2020) 2017 national standards for diabetes self-management education and support. Diabetes Educ 46:46–61. https://doi.org/10.1177/0145721719897952

    Article  PubMed  Google Scholar 

  3. Beck J, Greenwood DA, Blanton L et al (2017) 2017 national standards for diabetes self-management education and support. Diabetes Care 40:1409–1419. https://doi.org/10.2337/dci17-0025

    Article  PubMed  Google Scholar 

  4. Evert AB, Dennison M, Gardner CD et al (2019) Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care 42:731–754. https://doi.org/10.2337/dci19-0014

    Article  PubMed  PubMed Central  Google Scholar 

  5. DDG https://www.deutsche-diabetes-gesellschaft.de/fileadmin/user_upload/06_Gesundheitspolitik/01_Stellungnahmen/2019/20190927_Ausschuss_Ernaehrung_DDG_Stellungnahme_zu_den_ADA_Ernaehrungsempfehlungen.pdf

  6. American Diabetes Association (2020) 5. Facilitating behavior change and well-being to improve health outcomes: standards of medical care in diabetes-2020. Diabetes Care 43:S48–S65. https://doi.org/10.2337/dc20-S005

    Article  Google Scholar 

  7. Dyson PA, Twenefour D, Breen C et al (2018) Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet Med 35:541–547. https://doi.org/10.1111/dme.13603

    Article  CAS  PubMed  Google Scholar 

  8. Dworatzek PD, Arcudi K, Gougeon R et al (2013) Nutrition therapy. Can J Diabetes 37(Suppl. 01):S45–S55. https://doi.org/10.1016/j.jcjd.2013.01.019

    Article  PubMed  Google Scholar 

  9. Kröger J, Siegmund T, Schubert-Olesen O et al (2020) AGP-Fibel Ernährung. Mit CGM postprandiale Glukoseverläufe analysieren. Kirchheim, Mainz

    Google Scholar 

  10. Scavone G, Manto A, Pitocco D et al (2010) Effect of carbohydrate counting and medical nutritional therapy on glycaemic control in type 1 diabetic subjects: a pilot study. Diabet Med 27:477–479

    Article  CAS  PubMed  Google Scholar 

  11. Smart CE, King BR, McElduff P et al (2012) In children using intensive insulin therapy, a 20 g variation in carbohydrate amount signigicantly impacts on postprandial glycaemia. Diabet Med 29:e21–e24

    Article  CAS  PubMed  Google Scholar 

  12. Bell KJ, King BR, Shafat A et al (2015) The relationship between carbohydrate and the mealtime insulin dose in type 1 diabetes. J Diabetes Complications 29:1323–1329

    Article  PubMed  Google Scholar 

  13. Smart CE, Ross K et al (2010) Can children with Type 1 diabetes and their caregivers estimate the carbohydrate conent of meals and snacks. Diabet Med 27:348–353

    Article  CAS  PubMed  Google Scholar 

  14. Atkinson FS, Foster-Powell K, Brand-Miller JC (2008) International tables of glycemic index and glycemic load values: 2008. Diabetes Care 31:2281–2283. https://doi.org/10.2337/dc08-1239

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chantelau EA (2000) Quantifizierung des Blutglukoseeffekts der Nahrungsmittel: der glykämische Index (Kap. 14.4.2). In: Berger M (Hrsg) Diabetes mellitus, 2. Aufl. Urban & Fischer, München Jena, S 158–163

    Google Scholar 

  16. Strohm D (2013) Glykämischer Index und glykämische Last – ein für die Ernährungspraxis des Gesunden relevantes Konzept? Wissenschaftliche Stellungnahme der DGE. Ernahr Umsch 60:M26–M38

    Google Scholar 

  17. Chantelau E, Kronsbein P, Kempf U et al (1989) Untersuchung zum Mahlzeiten-bezogenen Insulinbedarf von Linsen und Kartoffeln bei Patienten mit Typ‑I Diabetes mellitus. Aktuel Ernahrungsmed 14:175–178

    Google Scholar 

  18. Lafrance L, Rabasa-Lhoret R, Poisson D et al (1998) Effects of different glycaemic index foods and dietary fibre intake on glycaemic control in type 1 diabetic patients on intensive insulin therapy. Diabet Med 15:972–978. https://doi.org/10.1002/(SICI)1096-9136(1998110)15:11〈972::AID-DIA704〉3.0.CO;2‑2

    Article  CAS  PubMed  Google Scholar 

  19. Parillo M, Annuzzi G, Rivellese AA et al (2011) Effects of meals with different glycaemic index on postprandial blood glucose response in patients with Type 1 diabetes treated with continuous subcutaneous insulin infusion. Diabet Med 28:227–229. https://doi.org/10.1111/j.1464-5491.2010.03176.x

    Article  CAS  PubMed  Google Scholar 

  20. Chantelau E, Spraul M, Kunze K et al (1986) Effects of the glycaemic index of dietary carbohydrates on prandial glycaemia and insulin therapy in type I diabetes mellitus. Diabetes Res Clin Pract 2:35–41. https://doi.org/10.1016/s0168-8227(86)80027-4

    Article  CAS  PubMed  Google Scholar 

  21. Fontvieille AM, Acosta M, Rizkalla SW et al (1988) A moderate switch from high to low glycaemic-index foods for 3 weeks improves the metabolic control of Type I (IDDM) diabetic subjects. Diabetes Nutr Metab 1:139–143

    Google Scholar 

  22. Thomas DE, Elliott EJ (2010) The use of low-glycaemic index diets in diabetes control. Br J Nutr 104:797–802. https://doi.org/10.1017/S0007114510001534

    Article  CAS  PubMed  Google Scholar 

  23. Giacco R, Parillo M, Rivellese AA et al (2000) Long-term dietary treatment with increased amounts of fiber-rich low-glycemic index natural foods improves blood glucose control and reduces the number of hypoglycemic events in type 1 diabetic patients. Diabetes Care 23:1461–1466. https://doi.org/10.2337/diacare.23.10.1461

    Article  CAS  PubMed  Google Scholar 

  24. Fontvieille AM, Rizkalla SW, Penfornis A et al (1992) The use of low glycaemic index foods improves metabolic control of diabetic patients over five weeks. Diabet Med 9:444–450. https://doi.org/10.1111/j.1464-5491.1992.tb01815.x

    Article  CAS  PubMed  Google Scholar 

  25. Vega-López S, Venn BJ, Slavin JL (2018) Relevance of the glycemic index and Glycemic load for body weight, diabetes, and cardiovascular disease. Nutrients. https://doi.org/10.3390/nu10101361

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nansel TR, Gellar L, McGill A (2008) Effect of varying glycemic index meals on blood glucose control assessed with continuous glucose monitoring in youth with type 1 diabetes on basal-bolus insulin regimens. Diabetes Care 31:695–697. https://doi.org/10.2337/dc07-1879

    Article  PubMed  Google Scholar 

  27. Ryan RL, King BR, Anderson DG et al (2008) Influence of and optimal insulin therapy for a low-glycemic index meal in children with type 1 diabetes receiving intensive insulin therapy. Diabetes Care 31:1485–1490. https://doi.org/10.2337/dc08-0331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Collier GR, Giudici S, Kalmusky J et al (1988) Low glycaemic index starchy foods improve glucose control and lower serum cholesterol in diabetic children. Diabetes Nutr Metab 1:11–19

    Google Scholar 

  29. Gilbertson HR, Brand-Miller JC, Thorburn AW et al (2001) The effect of flexible low glycemic index dietary advice versus measured carbohydrate exchange diets on glycemic control in children with type 1 diabetes. Diabetes Care 24:1137–1143. https://doi.org/10.2337/diacare.24.7.1137

    Article  CAS  PubMed  Google Scholar 

  30. Pańkowska E, Błazik M, Groele L (2012) Does the fat-protein meal increase postprandial glucose level in type 1 diabetes patients on insulin pump: the conclusion of a randomized study. Diabetes Technol Ther 14:16–22. https://doi.org/10.1089/dia.2011.0083

    Article  CAS  PubMed  Google Scholar 

  31. Winiger G, Keller U, Laager R et al (1995) Protein content of the evening meal and nocturnal plasma glucose regulation in type‑I diabetic subjects. Horm Res 44:101–104. https://doi.org/10.1159/000184604

    Article  CAS  PubMed  Google Scholar 

  32. Smart CEM, Evans M, O’Connell SM et al (2013) Both dietary protein and fat increase postprandial glucose excursions in children with type 1 diabetes, and the effect is additive. Diabetes Care 36:3897–3902. https://doi.org/10.2337/dc13-1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pańkowska E, Błazik M (2010) Bolus calculator with nutrition database software, a new concept of prandial insulin programming for pump users. J Diabetes Sci Technol 4:571–576. https://doi.org/10.1177/193229681000400310

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hermann K et al (2019) Untersuchungen zur Effektivität und Sicherheit einer zusätzlichen Insulingabe für Mahlzeiten mit hohem Fett-und Eiweißgehalt bei Patienten mit Typ-1-Diabetes mellitus (Im Rahmen einer Promotionsarbeit)

    Google Scholar 

  35. Eschenburger S, Tombek A. et al Untersuchung einer Nussmahlzeit als Spätmahlzeit unter Berücksichtigung einer kontinuierlichen Glucosemessung. Im Rahmen einer Masterarbeit, nicht veröffentlicht, 2020

  36. Krems C, Walter C, Heuer T et al (2013) Nationale Verzehrsstudie II – Lebensmittelverzehr und Naehrstoffzufuhr auf Basis von 24h-Recalls. Max Rubner-Institut,

    Google Scholar 

  37. Hakola L, Miettinen ME, Syrjälä E et al (2019) Association of cereal, gluten, and dietary fiber intake with islet autoimmunity and type 1 diabetes. JAMA Pediatr. https://doi.org/10.1001/jamapediatrics.2019.2564

    Article  PubMed  PubMed Central  Google Scholar 

  38. de Carvalho CM, Gross LA, de Azevedo MJ et al (2019) Dietary fiber intake (supplemental or dietary pattern rich in fiber) and diabetic kidney disease: a systematic review of clinical trials. Nutrients. https://doi.org/10.3390/nu11020347

    Article  PubMed  PubMed Central  Google Scholar 

  39. Beretta MV, Bernaud FR, Nascimento C et al (2018) Higher fiber intake is associated with lower blood pressure levels in patients with type 1 diabetes. Arch Endocrinol Metab 62:47–54. https://doi.org/10.20945/2359-3997000000008

    Article  PubMed  Google Scholar 

  40. Bernaud FSR, Beretta MV, do Nascimento C et al (2014) Fiber intake and inflammation in type 1 diabetes. Diabetol Metab Syndr 6:66. https://doi.org/10.1186/1758-5996-6-66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mottalib A, Kasetty M, Mar JY et al (2017) Weight management in patients with type 1 diabetes and obesity. Curr Diab Rep. https://doi.org/10.1007/s11892-017-0918-8

    Article  PubMed  PubMed Central  Google Scholar 

  42. Basu A, Alman AC, Snell-Bergeon JK (2019) Dietary fiber intake and glycemic control: coronary artery calcification in type 1 diabetes (CACTI) study. Nutr J 18:23. https://doi.org/10.1186/s12937-019-0449-z

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ho J, Nicolucci AC, Virtanen H et al (2019) Effect of prebiotic on microbiota, intestinal permeability, and glycemic control in children with type 1 diabetes. J Clin Endocrinol Metab 104:4427–4440. https://doi.org/10.1210/jc.2019-00481

    Article  PubMed  Google Scholar 

  44. European Commission Health promotion and disease prevention knowledge gateway. Sugars and sweeteners (01.02.2020). https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/sugars-sweeteners

  45. Franz MJ, Powers MA, Leontos C et al (2010) The evidence for medical nutrition therapy for type 1 and type 2 diabetes in adults. J Am Diet Assoc 110:1852–1889. https://doi.org/10.1016/j.jada.2010.09.014

    Article  PubMed  Google Scholar 

  46. Rippe JM, Angelopoulos TJ (2016) Sugars, obesity, and cardiovascular disease: results from recent randomized control trials. Eur J Nutr 55:45–53. https://doi.org/10.1007/s00394-016-1257-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Souto DL, Zajdenverg L, Rodacki M et al (2013) Does sucrose intake affect antropometric variables, glycemia, lipemia and C‑reactive protein in subjects with type 1 diabetes?: a controlled-trial. Diabetol Metab Syndr 5:67. https://doi.org/10.1186/1758-5996-5-67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cozma AI, Sievenpiper JL, de Souza RJ et al (2012) Effect of fructose on glycemic control in diabetes: a systematic review and meta-analysis of controlled feeding trials. Diabetes Care 35:1611–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Evans RA, Frese M, Romero J et al (2017) Fructose replacement of glucose or sucrose in food or beverages lowers postprandial glucose and insulin without raising triglycerides: a systematic review and meta-analysis. Am J Clin Nutr 106:506–518

    Article  CAS  PubMed  Google Scholar 

  50. Sievenpiper JL, Carleton AJ, Chatha S et al (2009) Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and meta-analysis of experimental trials in humans. Diabetes Care 32:1930–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Souto DL, Lima ÉS, Dantas JR et al (2019) Postprandial metabolic effects of fructose and glucose in type 1 diabetes patients: a pilot randomized crossover clinical trial. Arch Endocrinol Metab 63:376–384

    PubMed  Google Scholar 

  52. European Commission (2020) Health promotion and disease prevention knowledge gateway: sugars and sweeteners. https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/sugars-sweeteners

  53. American Diabetes Association (ADA). (2014) 4. Foundations of care: education, nutrition, physical activity, smoking cessation, psychosocial care, and immunization. Diabetes Care 38:20–31

    Article  Google Scholar 

  54. Sjöblad S (2019) Could the high consumption of high glycaemic index carbohydrates and sugars, associated with the nutritional transition to the Western type of diet, be the common cause of the obesity epidemic and the worldwide increasing incidences of Type 1 and Type 2 diabetes? Med Hypotheses 125:41–50

    Article  PubMed  Google Scholar 

  55. Lamb MM, Frederiksen B, Seifert JA et al (2015) Sugar intake is associated with progression from islet autoimmunity to type 1 diabetes: the Diabetes Autoimmunity Study in the Young. Diabetologia 58:2027–2034. https://doi.org/10.1007/s00125-015-3657-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Couch SC, Crandell JL, Shah AS et al (2013) Fructose intake and cardiovascular risk factors in youth with type 1 diabetes: SEARCH for diabetes in youth study. Diabetes Res Clin Pract 100:265–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nansel TR, Lipsky LM, Liu A (2016) Greater diet quality is associated with more optimal glycemic control in a longitudinal study of youth with type 1 diabetes. Am J Clin Nutr 104:81–87. https://doi.org/10.3945/ajcn.115.126136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. EFSA schließt vollständige Risikobewertung zu Aspartam ab und kommt zu dem Schluss, dass es in den derzeitigen Expositionsmengen sicher ist, 10.12.2013. https://www.efsa.europa.eu/de/press/news/131210. Zugegriffen: 2. Aug. 2020

  59. Toews I, Lohner S, Küllenberg de Gaudry D et al (2019) Association between intake of non-sugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. BMJ 364:k4718. https://doi.org/10.1136/bmj.k4718

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sylvetsky AC, Rother KI (2018) Nonnutritive sweeteners in weight management and chronic disease: a review. Obesity 26:635–640. https://doi.org/10.1002/oby.22139

    Article  PubMed  Google Scholar 

  61. Ashwell M, Gibson S, Bellisle F et al (2020) Expert consensus on low-calorie sweeteners: facts, research gaps and suggested actions. Nutr Res Rev. https://doi.org/10.1017/S0954422419000283

    Article  PubMed  PubMed Central  Google Scholar 

  62. Romo-Romo A, Aguilar-Salinas CA, Brito-Córdova GX et al (2016) Effects of the non-nutritive sweeteners on glucose metabolism and appetite regulating hormones: systematic review of observational prospective studies and clinical trials. Plos One 11:e161264. https://doi.org/10.1371/journal.pone.0161264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rogers PJ, Hogenkamp PS, de Graaf C et al (2016) Does low-energy sweetener consumption affect energy intake and body weight? A systematic review, including meta-analyses, of the evidence from human and animal studies. Int J Obes 40:381–394. https://doi.org/10.1038/ijo.2015.177

    Article  CAS  Google Scholar 

  64. Fantino M, Fantino A, Matray M et al (2018) Beverages containing low energy sweeteners do not differ from water in their effects on appetite, energy intake and food choices in healthy, non-obese French adults. Appetite 125:557–565. https://doi.org/10.1016/j.appet.2018.03.007

    Article  PubMed  Google Scholar 

  65. Bellisle F (2015) Intense sweeteners, appetite for the sweet taste, and relationship to weight management. Curr Obes Rep 4:106–110. https://doi.org/10.1007/s13679-014-0133-8

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lobach AR, Roberts A, Rowland IR (2019) Assessing the in vivo data on low/no-calorie sweeteners and the gut microbiota. Food Chem Toxicol 124:385–399. https://doi.org/10.1016/j.fct.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  67. Ahmad SY, Azad MB, Friel J et al (2019) Recent evidence for the effects of nonnutritive sweeteners on glycaemic control. Curr Opin Clin Nutr Metab Care 22:278–283. https://doi.org/10.1097/MCO.0000000000000566

    Article  PubMed  Google Scholar 

  68. Hunter SR, Reister EJ, Cheon E et al (2019) Low calorie sweeteners differ in their physiological effects in humans. Nutrients. https://doi.org/10.3390/nu11112717

    Article  PubMed  PubMed Central  Google Scholar 

  69. Deutsche Diabetes Gesellschaft https://www.awmf.org/uploads/tx_szleitlinien/057-013l_S3-Therapie-Typ-1-Diabetes_2018-08.pdf

  70. Nezu U, Kamiyama H, Kondo Y et al (2013) Effect of low-protein diet on kidney function in diabetic nephropathy: meta-analysis of randomised controlled trials. BMJ Open. https://doi.org/10.1136/bmjopen-2013-002934

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dussol B, Iovanna C, Raccah D et al (2005) A randomized trial of low-protein diet in type 1 and in type 2 diabetes mellitus patients with incipient and overt nephropathy. J Ren Nutr 15:398–406. https://doi.org/10.1053/j.jrn.2005.07.003

    Article  PubMed  Google Scholar 

  72. Seckold R, Fisher E, de Bock M et al (2019) The ups and downs of low-carbohydrate diets in the management of Type 1 diabetes: a review of clinical outcomes. Diabet Med 36:326–334. https://doi.org/10.1111/dme.13845

    Article  CAS  PubMed  Google Scholar 

  73. Donaghue KC, Pena MM, Chan AKF et al (2000) Beneficial effects of increasing monounsaturated fat intake in adolescents with type 1 diabetes. Diabetes Res Clin Pract 48:193–199. https://doi.org/10.1016/s0168-8227(00)00123-6

    Article  CAS  PubMed  Google Scholar 

  74. Gingras V, Leroux C, Desjardins K et al (2015) Association between Cardiometabolic Profile and Dietary Characteristics among Adults with Type 1 Diabetes Mellitus. J Acad Nutr Diet 115:1965–1974. https://doi.org/10.1016/j.jand.2015.04.012

    Article  PubMed  Google Scholar 

  75. Fortin A, Rabasa-Lhoret R, Lemieux S et al (2018) Comparison of a Mediterranean to a low-fat diet intervention in adults with type 1 diabetes and metabolic syndrome: a 6‑month randomized trial. Nutr Metab Cardiovasc Dis 28:1275–1284. https://doi.org/10.1016/j.numecd.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  76. Cadario F, Prodam F, Pasqualicchio S et al (2012) Lipid profile and nutritional intake in children and adolescents with Type 1 diabetes improve after a structured dietician training to a Mediterranean-style diet. J Endocrinol Invest 35:160–168. https://doi.org/10.3275/7755

    Article  CAS  PubMed  Google Scholar 

  77. Zhong VW, Lamichhane AP, Crandell JL et al (2016) Association of adherence to a Mediterranean diet with glycemic control and cardiovascular risk factors in youth with type I diabetes: the SEARCH Nutrition Ancillary Study. Eur J Clin Nutr 70:802–807. https://doi.org/10.1038/ejcn.2016.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Günther ALB, Liese AD, Bell RA et al (2009) Association between the dietary approaches to hypertension diet and hypertension in youth with diabetes mellitus. Hypertension 53:6–12. https://doi.org/10.1161/HYPERTENSIONAHA.108.116665

    Article  CAS  PubMed  Google Scholar 

  79. Liese AD, Bortsov A, Günther ALB et al (2011) Association of DASH diet with cardiovascular risk factors in youth with diabetes mellitus: the Search for Diabetes in Youth study. Circulation 123:1410–1417. https://doi.org/10.1161/CIRCULATIONAHA.110.955922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Peairs AD, Shah AS, Summer S et al (2017) Effects of the dietary approaches to stop hypertension (DASH) diet on glucose variability in youth with Type 1 diabetes. Diabetes Manag 7:383–391

    Google Scholar 

  81. Nansel TR, Haynie DL, Lipsky LM et al (2012) Multiple indicators of poor diet quality in children and adolescents with type 1 diabetes are associated with higher body mass index percentile but not glycemic control. J Acad Nutr Diet 112:1728–1735. https://doi.org/10.1016/j.jand.2012.08.029

    Article  PubMed  PubMed Central  Google Scholar 

  82. Powers MA, Gal RL, Connor CG et al (2018) Eating patterns and food intake of persons with type 1 diabetes within the T1D exchange. Diabetes Res Clin Pract 141:217–228. https://doi.org/10.1016/j.diabres.2018.05.011

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sanjeevi N, Lipsky LM, Nansel TR (2018) Cardiovascular biomarkers in association with dietary intake in a longitudinal study of youth with type 1 diabetes. Nutrients. https://doi.org/10.3390/nu10101552

    Article  PubMed  PubMed Central  Google Scholar 

  84. Petersen KS, Keogh JB, Lister NB et al (2018) Dietary quality and carotid intima media thickness in type 1 and type 2 diabetes: follow-up of a randomised controlled trial. Nutr Metab Cardiovasc Dis 28:830–838. https://doi.org/10.1016/j.numecd.2018.05.001

    Article  CAS  PubMed  Google Scholar 

  85. Costacou T, Crandell J, Kahkoska AR et al (2018) Dietary patterns over time and microalbuminuria in youth and young adults with type 1 diabetes: the SEARCH nutrition ancillary study. Diabetes Care 41:1615–1622. https://doi.org/10.2337/dc18-0319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liese AD, Ma X, Ma X et al (2018) Dietary quality and markers of inflammation: no association in youth with type 1 diabetes. J Diabetes Complicat 32:179–184. https://doi.org/10.1016/j.jdiacomp.2017.10.015

    Article  Google Scholar 

  87. Ahola AJ, Freese R, Mäkimattila S et al (2016) Dietary patterns are associated with various vascular health markers and complications in type 1 diabetes. J Diabetes Complicat 30:1144–1150. https://doi.org/10.1016/j.jdiacomp.2016.03.028

    Article  Google Scholar 

  88. Ahola AJ, Gordin D, Forsblom C et al (2018) Association between diet and measures of arterial stiffness in type 1 diabetes—Focus on dietary patterns and macronutrient substitutions. Nutr Metab Cardiovasc Dis 28:1166–1172. https://doi.org/10.1016/j.numecd.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  89. Jaacks LM, Crandell J, Mendez MA et al (2015) Dietary patterns associated with HbA1c and LDL cholesterol among individuals with type 1 diabetes in China. J Diabetes Complicat 29:343–349. https://doi.org/10.1016/j.jdiacomp.2014.12.014

    Article  Google Scholar 

  90. Lamichhane AP, Liese AD, Urbina EM et al (2014) Associations of dietary intake patterns identified using reduced rank regression with markers of arterial stiffness among youth with type 1 diabetes. Eur J Clin Nutr 68:1327–1333. https://doi.org/10.1038/ejcn.2014.96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. van Bussel BCT, Soedamah-Muthu SS, Henry RMA et al (2013) Unhealthy dietary patterns associated with inflammation and endothelial dysfunction in type 1 diabetes: the EURODIAB study. Nutr Metab Cardiovasc Dis 23:758–764. https://doi.org/10.1016/j.numecd.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  92. Gill S, Panda S (2015) A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab 22:789–798. https://doi.org/10.1016/j.cmet.2015.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kahleova H, Lloren JI, Mashchak A et al (2017) Meal frequency and timing are associated with changes in body mass index in adventist health study 2. J Nutr 147:1722–1728. https://doi.org/10.3945/jn.116.244749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. McCrory MA, Howarth NC, Roberts SB et al (2011) Eating frequency and energy regulation in free-living adults consuming self-selected diets. J Nutr 141:148–153. https://doi.org/10.3945/jn.109.114991

    Article  CAS  PubMed  Google Scholar 

  95. Ohkawara K, Cornier MA, Kohrt WM et al (2013) Effects of increased meal frequency on fat oxidation and perceived hunger. Obes (silver Spring) 21:336–343. https://doi.org/10.1002/oby.20032

    Article  Google Scholar 

  96. Kahleova H, Belinova L, Malinska H et al (2014) Eating two larger meals a day (breakfast and lunch) is more effective than six smaller meals in a reduced-energy regimen for patients with type 2 diabetes: a randomised crossover study. Diabetologia 57:1552–1560. https://doi.org/10.1007/s00125-014-3253-5

    Article  PubMed  PubMed Central  Google Scholar 

  97. Koopman KE, Caan MWA, Nederveen AJ et al (2014) Hypercaloric diets with increased meal frequency, but not meal size, increase intrahepatic triglycerides: a randomized controlled trial. Hepatology 60:545–553. https://doi.org/10.1002/hep.27149

    Article  CAS  PubMed  Google Scholar 

  98. St-Onge MP, Ard J, Baskin ML et al (2017) Meal timing and frequency: implications for cardiovascular disease prevention: a scientific statement from the American Heart Association. Circulation 135:e96–e121. https://doi.org/10.1161/CIR.0000000000000476

    Article  PubMed  PubMed Central  Google Scholar 

  99. Stote KS, Baer DJ, Spears K et al (2007) A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am J Clin Nutr 85:981–988. https://doi.org/10.1093/ajcn/85.4.981

    Article  CAS  PubMed  Google Scholar 

  100. Tinsley GM, Forsse JS, Butler NK et al (2017) Time-restricted feeding in young men performing resistance training: a randomized controlled trial. Eur J Sport Sci 17:200–207. https://doi.org/10.1080/17461391.2016.1223173

    Article  PubMed  Google Scholar 

  101. Moro T, Tinsley G, Bianco A et al (2016) Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J Transl Med 14:290. https://doi.org/10.1186/s12967-016-1044-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nas A, Mirza N, Hägele F et al (2017) Impact of breakfast skipping compared with dinner skipping on regulation of energy balance and metabolic risk. Am J Clin Nutr 105:1351–1361. https://doi.org/10.3945/ajcn.116.151332

    Article  CAS  PubMed  Google Scholar 

  103. Sutton EF, Beyl R, Early KS et al (2018) Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with Prediabetes. Cell Metab 27:1212–1221.e3. https://doi.org/10.1016/j.cmet.2018.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ravussin E, Beyl RA, Poggiogalle E et al (2019) Early time-restricted feeding reduces appetite and increases fat oxidation but does not affect energy expenditure in humans. Obesity 27:1244–1254. https://doi.org/10.1002/oby.22518

    Article  CAS  PubMed  Google Scholar 

  105. Mattson MP, Allison DB, Fontana L et al (2014) Meal frequency and timing in health and disease. Proc Natl Acad Sci U S A 111:16647–16653. https://doi.org/10.1073/pnas.1413965111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bo S, Fadda M, Castiglione A et al (2015) Is the timing of caloric intake associated with variation in diet-induced thermogenesis and in the metabolic pattern? A randomized cross-over study. Int J Obes 39:1689–1695. https://doi.org/10.1038/ijo.2015.138

    Article  CAS  Google Scholar 

  107. Henry CJ, Kaur B, Quek RYC (2020) Chrononutrition in the management of diabetes. Nutr Diabetes 10:6. https://doi.org/10.1038/s41387-020-0109-6

    Article  PubMed  PubMed Central  Google Scholar 

  108. Wilkinson MJ, Manoogian ENC, Zadourian A et al (2020) Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab 31:92–104.e5. https://doi.org/10.1016/j.cmet.2019.11.004

    Article  CAS  PubMed  Google Scholar 

  109. Trepanowski JF, Kroeger CM, Barnosky A et al (2017) Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial. JAMA Intern Med 177:930–938. https://doi.org/10.1001/jamainternmed.2017.0936

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sundfør TM, Svendsen M, Tonstad S (2018) Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: a randomized 1‑year trial. Nutr Metab Cardiovasc Dis 28:698–706. https://doi.org/10.1016/j.numecd.2018.03.009

    Article  PubMed  Google Scholar 

  111. Schübel R, Nattenmüller J, Sookthai D et al (2018) Effects of intermittent and continuous calorie restriction on body weight and metabolism over 50 wk: a randomized controlled trial. Am J Clin Nutr 108:933–945. https://doi.org/10.1093/ajcn/nqy196

    Article  PubMed  PubMed Central  Google Scholar 

  112. Carter S, Clifton PM, Keogh JB (2018) Effect of intermittent compared with continuous energy restricted diet on glycemic control in patients with type 2 diabetes: a randomized Noninferiority trial. Jama Netw Open 1:e180756. https://doi.org/10.1001/jamanetworkopen.2018.0756

    Article  PubMed  PubMed Central  Google Scholar 

  113. Corley BT, Carroll RW, Hall RM et al (2018) Intermittent fasting in Type 2 diabetes mellitus and the risk of hypoglycaemia: a randomized controlled trial. Diabet Med 35:588–594. https://doi.org/10.1111/dme.13595

    Article  CAS  PubMed  Google Scholar 

  114. Horne BD, Grajower MM, Anderson JL (2020) Limited evidence for the health effects and safety of intermittent fasting among patients with type 2 diabetes. JAMA. https://doi.org/10.1001/jama.2020.3908

    Article  PubMed  Google Scholar 

  115. Lawrence JM, Liese AD, Liu L et al (2008) Weight-loss practices and weight-related issues among youth with type 1 or type 2 diabetes. Dia Care 31:2251–2257. https://doi.org/10.2337/dc08-0719

    Article  Google Scholar 

  116. Kahkoska AR, Watts ME, Driscoll KA et al (2018) Understanding antagonism and synergism: a qualitative assessment of weight management in youth with type 1 diabetes mellitus. Obes Med 9:21–31. https://doi.org/10.1016/j.obmed.2017.12.001

    Article  PubMed  PubMed Central  Google Scholar 

  117. Diabetes and Nutrition Study Group of the Spanish Diabetes Association (GSEDNu). (2006) Diabetes and Nutrition Study Group of the Spanish Diabetes Association (GSEDNu). J Dibetes Complicat 20:361–366

    Article  Google Scholar 

  118. Strychar I, Cohn JS, Renier G et al (2009) Effects of a diet higher in carbohydrate/lower in fat versus lower in carbohydrate/higher in monounsaturated fat on postmeal triglyceride concentrations and other cardiovascular risk factors in type 1 diabetes. Diabetes Care 32:1597–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bozzetto L, Alderisio A, Giorgini M et al (2016) Extra-virgin olive oil reduces glycemic response to a high-glycemic index meal in patients with type 1 diabetes: a randomized controlled trial. Diabetes Care 39:518–524

    Article  PubMed  Google Scholar 

  120. Rosenfalck AM, Almdal T, Viggers L et al (2006) A low-fat diet improves peripheral insulin sensitivity in patients with Type 1 diabetes. Diabet Med 23:384–392. https://doi.org/10.1111/j.1464-5491.2005.01810.x

    Article  CAS  PubMed  Google Scholar 

  121. Nielsen JV, Jönsson E, Ivarsson A (2005) A low carbohydrate diet in type 1 diabetes: clinical experience—a brief report. Ups J Med Sci 110:267–273. https://doi.org/10.3109/2000-1967-074

    Article  PubMed  Google Scholar 

  122. Burge MR, Castillo KR, Schade DS (1997) Meal composition is a determinant of lispro-induced hypoglycemia in IDDM. Diabetes Care 20:152–155. https://doi.org/10.2337/diacare.20.2.152

    Article  CAS  PubMed  Google Scholar 

  123. Ranjan A, Schmidt S, Damm-Frydenberg C et al (2017) Short-term effects of a low carbohydrate diet on glycaemic variables and cardiovascular risk markers in patients with type 1 diabetes: a randomized open-label crossover trial. Diabetes Obes Metab 19:1479–1484. https://doi.org/10.1111/dom.12953

    Article  CAS  PubMed  Google Scholar 

  124. Ranjan A, Schmidt S, Damm-Frydenberg C et al (2017) Low-carbohydrate diet impairs the effect of glucagon in the treatment of insulin-induced mild hypoglycemia: a randomized crossover study. Diabetes Care 40:132–135. https://doi.org/10.2337/dc16-1472

    Article  CAS  PubMed  Google Scholar 

  125. Rabasa-Lhoret R, Garon J, Langelier H et al (1999) Effects of meal carbohydrate content on insulin requirements in type 1 diabetic patients treated intensively with the basal-bolus (ultralente-regular) insulin regimen. Diabetes Care 22:667–673. https://doi.org/10.2337/diacare.22.5.667

    Article  CAS  PubMed  Google Scholar 

  126. Anderson JW, Zeigler JA, Deakins DA et al (1991) Metabolic effects of high-carbohydrate, high-fiber diets for insulin-dependent diabetic individuals. Am J Clin Nutr 54:936–943. https://doi.org/10.1093/ajcn/54.5.936

    Article  CAS  PubMed  Google Scholar 

  127. McKewen MW, Rehrer NJ, Cox C et al (1999) Glycaemic control, muscle glycogen and exercise performance in IDDM athletes on diets of varying carbohydrate content. Int J Sports Med 20:349–353. https://doi.org/10.1055/s-2007-971143

    Article  CAS  PubMed  Google Scholar 

  128. Zavitsanou S, Massa J, Deshpande S et al (2019) The effect of two types of pasta versus white rice on postprandial blood glucose levels in adults with type 1 diabetes: a randomized crossover trial. Diabetes Technol Ther 21:485–492. https://doi.org/10.1089/dia.2019.0109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Rilstone S, Reddy M, Oliver N (2019) Glycemic Index, Extended Bolusing, and Diabetes Education in Insulin Pump Therapy (GLIDE: A Pilot Study). Diabetes Technol Ther 21:452–455. https://doi.org/10.1089/dia.2019.0079

    Article  CAS  PubMed  Google Scholar 

  130. Bruttomesso D, Tessari P (2019) A high-fiber diet decreases Postabsorptive protein turnover but does not alter insulin sensitivity in men with type 1 diabetes mellitus. J Nutr 149:596–604. https://doi.org/10.1093/jn/nxy300

    Article  PubMed  Google Scholar 

  131. Thinggaard M, Jacobsen R, Jeune B et al (2010) Is the relationship between BMI and mortality increasingly U‑shaped with advancing age? A 10-year follow-up of persons aged 70–95 years. J Gerontol A Biol Sci Med Sci 65:526–531. https://doi.org/10.1093/gerona/glp214

    Article  PubMed  Google Scholar 

  132. Guigoz Y, Vellas BJ (1997) Malnutrition im Alter: Das Mini Nutritional Assessment (MNA). Ther Umsch 54:345–350

    CAS  PubMed  Google Scholar 

  133. Rubenstein LZ, Harker JO, Salvà A et al (2001) Screening for undernutrition in geriatric practice: developing the short-form mini-nutritional assessment (MNA-SF). J Gerontol A Biol Sci Med Sci 56:M366–M72. https://doi.org/10.1093/gerona/56.6.m366

    Article  CAS  PubMed  Google Scholar 

  134. Bortsov AV, Liese AD, Bell RA et al (2011) Sugar-sweetened and diet beverage consumption is associated with cardiovascular risk factor profile in youth with type 1 diabetes. Acta Diabetol 48:275–282. https://doi.org/10.1007/s00592-010-0246-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liese AD, Crandell JL, Tooze JA et al (2015) Sugar-sweetened beverage intake and cardiovascular risk factor profile in youth with type 1 diabetes: application of measurement error methodology in the SEARCH Nutrition Ancillary Study. Br J Nutr 114:430–438. https://doi.org/10.1017/S0007114515002160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tetzschner R, Nørgaard K, Ranjan A (2018) Effects of alcohol on plasma glucose and prevention of alcohol-induced hypoglycemia in type 1 diabetes—A systematic review with GRADE. Diabetes Metab Res Rev. https://doi.org/10.1002/dmrr.2965

    Article  PubMed  Google Scholar 

  137. Liu X, Zhang Y, Wu H et al (2019) Intake of polyunsaturated fatty acids and risk of preclinical and clinical type 1 diabetes in children—a systematic review and meta-analysis. Eur J Clin Nutr 73:1–8. https://doi.org/10.1038/s41430-018-0185-z

    Article  CAS  PubMed  Google Scholar 

  138. Cadario F, Pozzi E, Rizzollo S et al (2019) Vitamin D and ω‑3 Supplementations in mediterranean diet during the 1st year of overt type 1 diabetes: a cohort study. Nutrients. https://doi.org/10.3390/nu11092158

    Article  PubMed  PubMed Central  Google Scholar 

  139. Antonucci R, Locci C, Clemente MG et al (2018) Vitamin D deficiency in childhood: old lessons and current challenges. J Pediatr Endocrinol Metab 31:247–260. https://doi.org/10.1515/jpem-2017-0391

    Article  PubMed  Google Scholar 

  140. Rak K, Bronkowska M (2018) Immunomodulatory effect of vitamin D and its potenzial role in the prevention and treatment of type 1 diabetes mellitus—a narrative review. Molecules. https://doi.org/10.3390/molecules24010053

    Article  PubMed  PubMed Central  Google Scholar 

  141. Dong JY, Zhang WG, Chen JJ et al (2013) Vitamin D intake and risk of type 1 diabetes: a meta-analysis of observational studies. Nutrients 5:3551–3562. https://doi.org/10.3390/nu5093551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Zipitis CS, Akobeng AK (2008) Vitamin D supplementation in early childhood and risk of type 1 diabetes: a systematic review and meta-analysis. Arch Dis Child 93:512–517. https://doi.org/10.1136/adc.2007.128579

    Article  CAS  PubMed  Google Scholar 

  143. Altieri B, Muscogiuri G, Barrea L et al (2017) Does vitamin D play a role in autoimmune endocrine disorders? A proof of concept. Rev Endocr Metab Disord 18:335–346. https://doi.org/10.1007/s11154-016-9405-9

    Article  CAS  PubMed  Google Scholar 

  144. Gregoriou E, Mamais I, Tzanetakou I et al (2017) The effects of vitamin D supplementation in newly diagnosed type 1 diabetes patients: systematic review of randomized controlled trials. Rev Diabet Stud 14:260–268. https://doi.org/10.1900/RDS.2017.14.260

    Article  PubMed  PubMed Central  Google Scholar 

  145. Thorsen SU, Halldorsson TI, Bjerregaard AA et al (2019) Maternal and early life iron intake and risk of childhood type 1 diabetes: a Danish case-cohort study. Nutrients. https://doi.org/10.3390/nu11040734

    Article  PubMed  PubMed Central  Google Scholar 

  146. Lin CC, Huang YL (2015) Chromium, zinc and magnesium status in type 1 diabetes. Curr Opin Clin Nutr Metab Care 18:588–592. https://doi.org/10.1097/MCO.0000000000000225

    Article  CAS  PubMed  Google Scholar 

  147. Jayawardena R, Ranasinghe P, Galappatthy P et al (2012) Effects of zinc supplementation on diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr 4:13. https://doi.org/10.1186/1758-5996-4-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Chimienti F (2013) Zinc, pancreatic islet cell function and diabetes: new insights into an old story. Nutr Res Rev 26:1–11. https://doi.org/10.1017/S0954422412000212

    Article  CAS  PubMed  Google Scholar 

  149. BgVVArbeitsgruppe https://mobil.bfr.bund.de/cm/343/probiot.pdf

  150. de Vrese M (2008) Mikrobiologie, Wirkung und Sicherheit von Probiotika. Monatsschr Kinderheilkd 156:1063–1069

    Article  Google Scholar 

  151. Zheng D, Liwinski T, Elinav E (2020) Interaction between microbiota and immunity in health and disease. Cell Res 30:492–506. https://doi.org/10.1038/s41422-020-0332-7

    Article  PubMed  PubMed Central  Google Scholar 

  152. Arpaia N, Campbell C, Fan X et al (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T‑cell generation. Nature 504:451–455. https://doi.org/10.1038/nature12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Smith PM, Howitt MR, Panikov N et al (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–573. https://doi.org/10.1126/science.1241165

    Article  CAS  PubMed  Google Scholar 

  154. Bosi E, Molteni L, Radaelli MG et al (2006) Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia 49:2824–2827. https://doi.org/10.1007/s00125-006-0465-3

    Article  CAS  PubMed  Google Scholar 

  155. Brown CT, Davis-Richardson AG, Giongo A et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. Plos One 6:e25792. https://doi.org/10.1371/journal.pone.0025792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. de Goffau MC, Luopajärvi K, Knip M et al (2013) Fecal microbiota composition differs between children with β‑cell autoimmunity and those without. Diabetes 62:1238–1244. https://doi.org/10.2337/db12-0526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kostic AD, Gevers D, Siljander H et al (2015) The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17:260–273. https://doi.org/10.1016/j.chom.2015.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Davis-Richardson AG, Ardissone AN, Dias R et al (2014) Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1 diabetes. Front Microbiol 5:678. https://doi.org/10.3389/fmicb.2014.00678

    Article  PubMed  PubMed Central  Google Scholar 

  159. de Goffau MC, Fuentes S, van den Bogert B et al (2014) Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 57:1569–1577. https://doi.org/10.1007/s00125-014-3274-0

    Article  CAS  PubMed  Google Scholar 

  160. Alkanani AK, Hara N, Gottlieb PA et al (2015) Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes 64:3510–3520. https://doi.org/10.2337/db14-1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Vatanen T, Franzosa EA, Schwager R et al (2018) The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature 562:589–594. https://doi.org/10.1038/s41586-018-0620-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Vatanen T, Kostic AD, d’Hennezel E et al (2016) Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165:842–853. https://doi.org/10.1016/j.cell.2016.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gavin PG, Hamilton-Williams EE (2019) The gut microbiota in type 1 diabetes: friend or foe? Curr Opin Endocrinol Diabetes Obes 26:207–212. https://doi.org/10.1097/MED.0000000000000483

    Article  CAS  PubMed  Google Scholar 

  164. Mishra SP, Wang S, Nagpal R et al (2019) Probiotics and prebiotics for the amelioration of type 1 diabetes: present and future perspectives. Microorganisms. https://doi.org/10.3390/microorganisms7030067

    Article  PubMed  PubMed Central  Google Scholar 

  165. Uusitalo U, Liu X, Yang J et al (2016) Association of early exposure of Probiotics and islet autoimmunity in the TEDDY study. JAMA Pediatr 170:20–28. https://doi.org/10.1001/jamapediatrics.2015.2757

    Article  PubMed  PubMed Central  Google Scholar 

  166. Savilahti E, Härkönen T, Savilahti EM et al (2018) Probiotic intervention in infancy is not associated with development of beta cell autoimmunity and type 1 diabetes. Diabetologia 61:2668–2670. https://doi.org/10.1007/s00125-018-4738-4

    Article  CAS  PubMed  Google Scholar 

  167. Zare Javid A, Aminzadeh M, Haghighi-Zadeh MH et al (2020) The effects of synbiotic supplementation on glycemic status, lipid profile, and biomarkers of oxidative stress in type 1 diabetic patients. A placebo-controlled, double-blind, randomized clinical trial. Diabetes Metab Syndr Obes 13:607–617. https://doi.org/10.2147/DMSO.S238867

    Article  PubMed  PubMed Central  Google Scholar 

  168. Bianchini S, Orabona C, Camilloni B et al (2020) Effects of probiotic administration on immune responses of children and adolescents with type 1 diabetes to a quadrivalent inactivated influenza vaccine. Hum Vaccin Immunother 16:86–94. https://doi.org/10.1080/21645515.2019.1633877

    Article  CAS  PubMed  Google Scholar 

  169. Zheng M, Zhang R, Tian X et al (2017) Assessing the risk of probiotic dietary supplements in the context of antibiotic resistance. Front Microbiol 8:908. https://doi.org/10.3389/fmicb.2017.00908

    Article  PubMed  PubMed Central  Google Scholar 

  170. Wong A, Ngu DYS, Dan LA et al (2015) Detection of antibiotic resistance in probiotics of dietary supplements. Nutr J 14:95. https://doi.org/10.1186/s12937-015-0084-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Singhi SC, Kumar S (2016) Probiotics in critically ill children. F1000Res. https://doi.org/10.12688/f1000research.7630.1

    Article  PubMed  PubMed Central  Google Scholar 

  172. Zmora N, Zilberman-Schapira G, Suez J et al (2018) Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174:1388–1405.e21. https://doi.org/10.1016/j.cell.2018.08.041

    Article  CAS  PubMed  Google Scholar 

Weiterführende Literatur

  1. Dullaart RP, Beusekamp BJ, Meijer S et al (1993) Long-term effects of protein-restricted diet on albuminuria and renal function in IDDM patients without clinical nephropathy and hypertension. Diabetes Care 16:483–492. https://doi.org/10.2337/diacare.16.2.483

    Article  CAS  PubMed  Google Scholar 

  2. Evans M, Smart CEM, Paramalingam N et al (2019) Dietary protein affects both the dose and pattern of insulin delivery required to achieve postprandial euglycaemia in Type 1 diabetes: a randomized trial. Diabet Med 36:499–504. https://doi.org/10.1111/dme.13875

    Article  CAS  PubMed  Google Scholar 

  3. Gingras V, Bonato L, Messier V et al (2018) Impact of macronutrient content of meals on postprandial glucose control in the context of closed-loop insulin delivery: A randomized cross-over study. Diabetes Obes Metab 20:2695–2699. https://doi.org/10.1111/dom.13445

    Article  CAS  PubMed  Google Scholar 

  4. de Groot PF, Belzer C, Aydin Ö et al (2017) Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. Plos One 12:e188475. https://doi.org/10.1371/journal.pone.0188475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haupt-Jørgensen M, Morgen CS, Jess T et al (2018) Maternal antibiotic use during pregnancy and type 1 diabetes in children—a national prospective cohort study. Diabetes Care 41:e155–e157. https://doi.org/10.2337/dc18-1764

    Article  CAS  PubMed  Google Scholar 

  6. Kemppainen KM, Vehik K, Lynch KF et al (2017) Association between early-life antibiotic use and the risk of islet or celiac disease autoimmunity. JAMA Pediatr 171:1217–1225. https://doi.org/10.1001/jamapediatrics.2017.2905

    Article  PubMed  PubMed Central  Google Scholar 

  7. Paterson MA, Smart CEM, Lopez PE et al (2016) Influence of dietary protein on postprandial blood glucose levels in individuals with Type 1 diabetes mellitus using intensive insulin therapy. Diabet Med 33:592–598. https://doi.org/10.1111/dme.13011

    Article  CAS  PubMed  Google Scholar 

  8. Paterson MA, Smart CEM, Lopez PE et al (2017) Increasing the protein quantity in a meal results in dose-dependent effects on postprandial glucose levels in individuals with Type 1 diabetes mellitus. Diabet Med 34:851–854. https://doi.org/10.1111/dme.13347

    Article  CAS  PubMed  Google Scholar 

  9. Stutz B, Ahola AJ, Harjutsalo V et al (2018) Association between habitual coffee consumption and metabolic syndrome in type 1 diabetes. Nutr Metab Cardiovasc Dis 28:470–476. https://doi.org/10.1016/j.numecd.2018.01.011

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Rubin.

Ethics declarations

Interessenkonflikt

D. Rubin, A. Bosy-Westphal, S. Kabisch, P. Kronsbein, M.-C. Simon, A. Tombek, K. Weber und T. Skurk geben an, dass kein Interessenkonflikt besteht.

Additional information

Dieser Beitrag wurde erstpubliziert in Diabetologie und Stoffwechsel (2020) 15 (Suppl 1): S120–S138, https://doi.org/10.1055/a-1245-5623. Nachdruck mit freundl. Genehmigung von Georg Thieme Verlag KG. Die Urheberrechte liegen bei den Autoren

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, D., Bosy-Westphal, A., Kabisch, S. et al. Empfehlungen zur Ernährung von Personen mit Typ-1-Diabetes mellitus. Diabetologe 17, 311–329 (2021). https://doi.org/10.1007/s11428-021-00749-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11428-021-00749-5

Navigation