Skip to main content
Log in

Adenylate kinase phosphate energy shuttle underlies energetic communication in flagellar axonemes

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The complexities of energy transfer mechanisms in the flagella of mammalian sperm flagella have been intensively investigated and demonstrate significant diversity across species. Enzymatic shuttles, particularly adenylate kinase (AK) and creatine kinase (CK), are pivotal in the efficient transfer of intracellular ATP, showing distinct tissue- and species-specificity. Here, the expression profiles of AK and CK were investigated in mice and found to fall into four subgroups, of which Subgroup III AKs were observed to be unique to the male reproductive system and conserved across chordates. Both AK8 and AK9 were found to be indispensable to male reproduction after analysis of an infertile male cohort. Knockout mouse models showed that AK8 and AK9 were central to promoting sperm motility. Immunoprecipitation combined with mass spectrometry revealed that AK8 and AK9 interact with the radial spoke (RS) of the axoneme. Examination of various human and mouse sperm samples with substructural damage, including the presence of multiple RS subunits, showed that the head of radial spoke 3 acts as an adapter for AK9 in the flagellar axoneme. Using an ATP probe together with metabolomic analysis, it was found that AK8 and AK9 cooperatively regulated ATP transfer in the axoneme, and were concentrated at sites associated with energy consumption in the flagellum. These findings indicate a novel function for RS beyond its structural role, namely, the regulation of ATP transfer. In conclusion, the results expand the functional spectrum of AK proteins and suggest a fresh model regarding ATP transfer within mammalian flagella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

All the data supporting the results of the present study are provided to the corresponding authors upon request.

References

  • Adam, D.E., and Wei, J. (1975). Mass transport of ATP within the motile sperm. J Theor Biol 49, 125–145.

    Article  CAS  PubMed  Google Scholar 

  • Ames, A. (2000). CNS energy metabolism as related to function. Brain Res Rev 34, 42–68.

    Article  CAS  PubMed  Google Scholar 

  • Amiri, M., Conserva, F., Panayiotou, C., Karlsson, A., and Solaroli, N. (2013). The human adenylate kinase 9 is a nucleoside mono- and diphosphate kinase. Int J Biochem Cell Biol 45, 925–931.

    Article  CAS  PubMed  Google Scholar 

  • Auguste, Y., Delague, V., Desvignes, J.P., Longepied, G., Gnisci, A., Besnier, P., Levy, N., Beroud, C., Megarbane, A., Metzler-Guillemain, C., et al. (2018). Loss of calmodulin- and radial-spoke-associated complex protein CFAP251 leads to immotile spermatozoa lacking mitochondria and infertility in men. Am J Hum Genet 103, 413–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Khelifa, M., Coutton, C., Zouari, R., Karaouzène, T., Rendu, J., Bidart, M., Yassine, S., Pierre, V., Delaroche, J., Hennebicq, S., et al. (2014). Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet 94, 95–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bessman, S.P., and Carpenter, C.L. (1985). The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54, 831–862.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, M.P., Geelan, A., Leitch, V., and Goldberg, E. (1996). Cloning, sequencing, and characterization of LDH-C4 from a fox testis cDNA library. Mol Reprod Dev 44, 452–459.

    Article  CAS  PubMed  Google Scholar 

  • Castaneda, J.M., Hua, R., Miyata, H., Oji, A., Guo, Y., Cheng, Y., Zhou, T., Guo, X., Cui, Y., Shen, B., et al. (2017). TCTE1 is a conserved component of the dynein regulatory complex and is required for motility and metabolism in mouse spermatozoa. Proc Natl Acad Sci USA 114, E5370–E5378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castleman, V.H., Romio, L., Chodhari, R., Hirst, R.A., de Castro, S.C.P., Parker, K.A., Ybot-Gonzalez, P., Emes, R.D., Wilson, S.W., Wallis, C., et al. (2009). Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-microtubular-pair abnormalities. Am J Hum Genet 84, 197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, T.G., Noonan, E., von Eckardstein, S., Auger, J., Baker, H.W.G., Behre, H.M., Haugen, T.B., Kruger, T., Wang, C., Mbizvo, M.T., et al. (2010). World Health Organization reference values for human semen characteristics. Hum Reprod Update 16, 231–245.

    Article  PubMed  Google Scholar 

  • Dougherty, G.W., Mizuno, K., Nöthe-Menchen, T., Ikawa, Y., Boldt, K., Ta-Shma, A., Aprea, I., Minegishi, K., Pang, Y.P., Pennekamp, P., et al. (2020). CFAP45 deficiency causes situs abnormalities and asthenospermia by disrupting an axonemal adenine nucleotide homeostasis module. Nat Commun 11, 5520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, J., Tao, J., Kleinhans, F.W., Mazur, P., and Critser, J.K. (1994). Water volume and osmotic behaviour of mouse spermatozoa determined by electron paramagnetic resonance. Reproduction 101, 37–42.

    Article  CAS  Google Scholar 

  • du Plessis, S.S., Agarwal, A., Mohanty, G., and van der Linde, M. (2015). Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use? Asian J Androl 17, 230.

    Article  CAS  PubMed  Google Scholar 

  • Dzeja, P.P., and Terzic, A. (2003). Phosphotransfer networks and cellular energetics. J Exp Biol 206, 2039–2047.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Gonzalez, A., Kourembanas, S., Wyatt, T.A., and Mitsialis, S.A. (2009). Mutation of murine adenylate kinase 7 underlies a primary ciliary dyskinesia phenotype. Am J Respir Cell Mol Biol 40, 305–313.

    Article  CAS  PubMed  Google Scholar 

  • Ford, W.C.L. (2006). Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round? Hum Reprod Update 12, 269–274.

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa, K. (2023). Regulation of adenine nucleotide metabolism by adenylate kinase isozymes: physiological roles and diseases. Int J Mol Sci 24, 5561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser, M., Nulty, W., and Vagelos, P.R. (1975). Role of adenylate kinase in the regulation of macromolecular biosynthesis in a putative mutant of Escherichia coli defective in membrane phospholipid biosynthesis. J Bacteriol 123, 128–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, L., Rao, Q., Yang, R., Wang, Y., Chai, P., Xiong, Y., and Zhang, K. (2022). Cryo-EM structure of an active central apparatus. Nat Struct Mol Biol 29, 472–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houston, B.J., Riera-Escamilla, A., Wyrwoll, M.J., Salas-Huetos, A., Xavier, M.J., Nagirnaja, L., Friedrich, C., Conrad, D.F., Aston, K.I., Krausz, C., et al. (2021). A systematic review of the validated monogenic causes of human male infertility: 2020 update and a discussion of emerging gene-disease relationships. Hum Reprod Update 28, 15–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hua, R., Wei, H., Liu, C., Zhang, Y., Liu, S., Guo, Y., Cui, Y., Zhang, X., Guo, X., Li, W., et al. (2019). FBXO47 regulates telomere-inner nuclear envelope integration by stabilizing TRF2 during meiosis. Nucleic Acids Res 47, 11755–11770.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hua, R., Xue, R., Liu, Y., Li, Y., Sha, X., Li, K., Gao, Y., Shen, Q., Lv, M., Xu, Y., et al. (2023). ACROSIN deficiency causes total fertilization failure in humans by preventing the sperm from penetrating the zona pellucida. Hum Reprod 38, 1213–1223.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, J.Y., Chai, P., Nawaz, S., Choi, J., Lopez-Giraldez, F., Hussain, S., Bilguvar, K., Mane, S., Lifton, R.P., Ahmad, W., et al. (2023). LRRC23 loss-of-function impairs radial spoke 3 head assembly and causes defective sperm motility underlying male infertility. bioRxiv 2023.2002.2025.530050.

  • Janssen, E., Dzeja, P.P., Oerlemans, F., Simonetti, A.W., Heerschap, A., de Haan, A., Rush, P.S., Terjung, R.R., Wieringa, B., and Terzic, A. (2000). Adenylate kinase 1 gene deletion disrupts muscle energetic economy despite metabolic rearrangement. EMBO J 19, 6371–6381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krisfalusi, M., Miki, K., Magyar, P.L., and O’Brien, D.A. (2006). Multiple glycolytic enzymes are tightly bound to the fibrous sheath of mouse spermatozoa. Biol Reprod 75, 270–278.

    Article  CAS  PubMed  Google Scholar 

  • Kuang, W., Zhang, J., Lan, Z., Deepak, R.N.V.K., Liu, C., Ma, Z., Cheng, L., Zhao, X., Meng, X., Wang, W., et al. (2021). SLC22A14 is a mitochondrial riboflavin transporter required for sperm oxidative phosphorylation and male fertility. Cell Rep 35, 109025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachance, C., and Leclerc, P. (2011). Mediators of the JAK/STAT signaling pathway in human spermatozoa. Biol Reprod 85, 1222–1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Coghlan, A., Ruan, J., Coin, L., Hériché, J., Osmotherly, L., Li, R., Liu, T., Zhang, Z., Bolund, L., et al. (2006). TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res 34, D572–D580.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., He, X., Yang, S., Liu, C., Wu, H., Liu, W., Lv, M., Tang, D., Tan, J., Tang, S., et al. (2019). Biallelic mutations of CFAP251 cause sperm flagellar defects and human male infertility. J Hum Genet 64, 49–54.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., and Zhang, F. (2023). PIWI-specific insertion module: a newly identified regulatory element essential for longer piRNAs loading and male fertility. Sci China Life Sci 66, 1708–1710.

    Article  CAS  PubMed  Google Scholar 

  • Liu, M., Shi, X., Bi, Y., Qi, L., Guo, X., Wang, L., Zhou, Z., and Sha, J. (2014). SHCBP1L, a conserved protein in mammals, is predominantly expressed in male germ cells and maintains spindle stability during meiosis in testis. Mol Hum Reprod 20, 463–475.

    Article  PubMed  Google Scholar 

  • Liu, Y., Li, Y., Meng, L., Li, K., Gao, Y., Lv, M., Guo, R., Xu, Y., Zhou, P., Wei, Z., et al. (2023). Bi-allelic human TEKT3 mutations cause male infertility with oligoasthenoteratozoospermia owing to acrosomal hypoplasia and reduced progressive motility. Hum Mol Genet 32, 1730–1740.

    Article  CAS  PubMed  Google Scholar 

  • Lorès, P., Coutton, C., El Khouri, E., Stouvenel, L., Givelet, M., Thomas, L., Rode, B., Schmitt, A., Louis, B., Sakheli, Z., et al. (2018). Homozygous missense mutation L673P in adenylate kinase 7 (AK7) leads to primary male infertility and multiple morphological anomalies of the flagella but not to primary ciliary dyskinesia. Hum Mol Genet 27, 1196–1211.

    Article  PubMed  Google Scholar 

  • Matzuk, M.M., and Lamb, D.J. (2008). The biology of infertility: research advances and clinical challenges. Nat Med 14, 1197–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miki, K., Qu, W., Goulding, E.H., Willis, W.D., Bunch, D.O., Strader, L.F., Perreault, S. D., Eddy, E.M., and O’Brien, D.A. (2004). Glyceraldehyde 3-phosphate dehydrogenase, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci USA 101, 16501–16506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevo, A.C., and Rikmenspoel, R. (1970). Diffusion of ATP in sperm flagella. J Theor Biol 26, 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Odet, F., Gabel, S., London, R.E., Goldberg, E., and Eddy, E.M. (2013). Glycolysis and mitochondrial respiration in mouse LDHC-null sperm. Biol Reprod 88, 95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Panayiotou, C., Solaroli, N., and Karlsson, A. (2014). The many isoforms of human adenylate kinases. Int J Biochem Cell Biol 49, 75–83.

    Article  CAS  PubMed  Google Scholar 

  • Panayiotou, C., Solaroli, N., Xu, Y., Johansson, M., and Karlsson, A. (2011). The characterization of human adenylate kinases 7 and 8 demonstrates differences in kinetic parameters and structural organization among the family of adenylate kinase isoenzymes. Biochem J 433, 527–534.

    Article  CAS  PubMed  Google Scholar 

  • Pannicke, U., Hönig, M., Hess, I., Friesen, C., Holzmann, K., Rump, E.M., Barth, T.F., Rojewski, M.T., Schulz, A., Boehm, T., et al. (2009). Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 41, 101–105.

    Article  CAS  PubMed  Google Scholar 

  • Paoli, D., Gallo, M., Rizzo, F., Baldi, E., Francavilla, S., Lenzi, A., Lombardo, F., and Gandini, L. (2011). Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil Steril 95, 2315–2319.

    Article  CAS  PubMed  Google Scholar 

  • Pucar, D., Bast, P., Gumina, R.J., Lim, L., Drahl, C., Juranic, N., Macura, S., Janssen, E., Wieringa, B., Terzic, A., et al. (2002). Adenylate kinase AK1 knockout heart: energetics and functional performance under ischemia-reperfusion. Am J Physiol Heart Circ Physiol 283, H776–H782.

    Article  CAS  PubMed  Google Scholar 

  • Rissone, A., Jimenez, E., Bishop, K., Carrington, B., Slevin, C., Wincovitch, S.M., Sood, R., Candotti, F., and Burgess, S.M. (2019). A model for reticular dysgenesis shows impaired sensory organ development and hair cell regeneration linked to cellular stress. Dis Model Mech 12, dmm.040170.

    Google Scholar 

  • Rissone, A., Weinacht, K.G., la Marca, G., Bishop, K., Giocaliere, E., Jagadeesh, J., Felgentreff, K., Dobbs, K., Al-Herz, W., Jones, M., et al. (2015). Reticular dysgenesis-associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress. J Exp Med 212, 1185–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robitaille, P.M.L., Robitaille, P.A., Martin, P.A., and Brown, G.G. (1987). Phosphorus-31 nuclear magnetic resonance studies of spermatozoa from the boar, ram, goat and bull. Comp Biochem Physiol Part B 87, 285–296.

    Article  CAS  Google Scholar 

  • Ruan, J., Li, H., Chen, Z., Coghlan, A., Coin, L.J.M., Guo, Y., Heriche, J.K., Hu, Y., Kristiansen, K., Li, R., et al. (2008). TreeFam: 2008 update. Nucleic Acids Res 36, D735–D740.

    Article  CAS  PubMed  Google Scholar 

  • Sellick, C.A., Hansen, R., Stephens, G.M., Goodacre, R., and Dickson, A.J. (2011). Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc 6, 1241–1249.

    Article  CAS  PubMed  Google Scholar 

  • Smith, B., Babcock, D.F., and Lardy, H.A. (1985). A 31P NMR study of the epididymis and epididymal sperm of the bull and hamster. Biol Reprod 33, 1029–1040.

    Article  CAS  PubMed  Google Scholar 

  • Steeghs, K., Oerlemans, F., and Wieringa, B. (1995). Mice deficient in ubiquitous mitochondrial creatine kinase are viable and fertile. Biochim Biophys Acta 1230, 130–138.

    Article  PubMed  Google Scholar 

  • Takei, G.L., Miyashiro, D., Mukai, C., and Okuno, M. (2014). Glycolysis plays an important role in energy transfer from the base to the distal end of the flagellum in mouse sperm. J Exp Biol 217, 1876–1886.

    CAS  PubMed  Google Scholar 

  • Tombes, R.M., and Shapiro, B.M. (1985). Metabolite channeling: a phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail. Cell 41, 325–334.

    Article  CAS  PubMed  Google Scholar 

  • Tu, C., Wang, W., Hu, T., Lu, G., Lin, G., and Tan, Y.Q. (2020). Genetic underpinnings of asthenozoospermia. Best Pract Res Clin Endocrinol Metab 34, 101472.

    Article  CAS  PubMed  Google Scholar 

  • Vadnais, M.L., Cao, W., Aghajanian, H.K., Haig-Ladewig, L., Lin, A.M., Al-Alao, O., and Gerton, G.L. (2014). Adenine nucleotide metabolism and a role for AMP in modulating flagellar waveforms in mouse sperm. Biol Reprod 90, 128.

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma, A., Åberg-Zingmark, E., Sparrman, T., Mushtaq, A.U., Rogne, P., Grundström, C., Berntsson, R., Sauer, U.H., Backman, L., Nam, K., et al. (2022). Insights into the evolution of enzymatic specificity and catalysis: From Asgard archaea to human adenylate kinases. Sci Adv 8, eabm4089.

    Article  Google Scholar 

  • Wang, X., Lin, D.H., Yan, Y., Wang, A.H., Liao, J., Meng, Q., Yang, W.Q., Zuo, H., Hua, M.M., Zhang, F., et al. (2023). The PIWI-specific insertion module helps load longer piRNAs for translational activation essential for male fertility. Sci China Life Sci 66, 1459–1481.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Wei, Y., Fu, G., Li, H., Saiyin, H., Lin, G., Wang, Z., Chen, S., and Yu, L. (2015). Tssk4 is essential for maintaining the structural integrity of sperm flagellum. Mol Hum Reprod 21, 136–145.

    Article  PubMed  Google Scholar 

  • Westhoff, D., and Kamp, G. (1997). Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa. J Cell Sci 110, 1821–1829.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Liu, Y., Li, Y., Li, K., Xu, C., Gao, Y., Lv, M., Guo, R., Xu, Y., Zhou, P., et al. (2023). DNALI1 deficiency causes male infertility with severe asthenozoospermia in humans and mice by disrupting the assembly of the flagellar inner dynein arms and fibrous sheath. Cell Death Dis 14, 127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiang, M., Wang, Y., Xu, W., Zheng, N., Deng, H., Zhang, J., Duan, Z., Zha, X., Zhang, W., Song, G., et al. (2022). A novel homozygous missense mutation in AK7 causes multiple morphological anomalies of the flagella and oligoasthenoteratozoospermia. J Assist Reprod Genet 39, 261–266.

    Article  PubMed  Google Scholar 

  • Yeung, C.H., Majumder, G.C., Rolf, C., Behre, H.M., and Cooper, T.G. (1996). The role of phosphocreatine kinase in the motility of human spermatozoa supported by different metabolic substrates. Mol Hum Reprod 2, 591–596.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, M., Breitkopf, S.B., Yang, X., and Asara, J.M. (2012). A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat Protoc 7, 872–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeleznikar, R.J., Dzeja, P.P., and Goldberg, N.D. (1995). Adenylate kinase-catalyzed phosphoryl transfer couples ATP utilization with its generation by glycolysis in intact muscle. J Biol Chem 270, 7311–7319.

    Article  CAS  PubMed  Google Scholar 

  • Zeleznikar, R.J., Heyman, R.A., Graeff, R.M., Walseth, T.F., Dawis, S.M., Butz, E.A., and Goldberg, N.D. (1990). Evidence for compartmentalized adenylate kinase catalysis serving a high energy phosphoryl transfer function in rat skeletal muscle. J Biol Chem 265, 300–311.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Yamada, S., Park, S., Klepinin, A., Kaambre, T., Terzic, A., and Dzeja, P. (2021). Adenylate kinase AK2 isoform integral in embryo and adult heart homeostasis. Biochem Biophys Res Commun 546, 59–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Xiao, Z., Zhang, J., Xu, C., Liu, S., Cheng, L., Zhou, S., Zhao, S., Zhang, Y., Wu, J., et al. (2022). Differential requirements of IQUB for the assembly of radial spoke 1 and the motility of mouse cilia and flagella. Cell Rep 41, 111683.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L., Liu, H., Liu, S., Yang, X., Dong, Y., Pan, Y., Xiao, Z., Zheng, B., Sun, Y., Huang, P., et al. (2023). Structures of sperm flagellar doublet microtubules expand the genetic spectrum of male infertility. Cell 186, 2897–2910.e19.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, S., Wu, H., Zhang, J., He, X., Liu, S., Zhou, P., Hua, R., Cao, Y., and Liu, M. (2022). Bi-allelic variants in human TCTE1/DRC5 cause asthenospermia and male infertility. Eur J Hum Genet 30, 721–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by National Key Research and Development Program of China (2022YFC2702702, 2021YFC2700901), the National Natural Science Foundation of China (81971441, 82171607, 32000584), the University Outstanding Young Talents Support Program (gxyq2021174), Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2019PT310002), Anhui Provincial Natural Science Foundation (2208085Y31), and the Natural Science Foundation of Jiangsu Province (BK20230004). We sincerely appreciate Tao Zhou from Nanjing Wushangzhigao Biomedical Technology Co., LTD and Yangyang Wu from Nanjing Maternity and Child Health Care Hospital for the data analysis of metabolomics; Danhong Qiu for the drawing of the model; Zibin Wang from Nanjing Medical University and Haijian Cai from the Anhui Medical University for the sample preparation and SEM/TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong Hua, Yunxia Cao, Mingxi Liu or Xiaojin He.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Zhang, Y., Li, Y. et al. Adenylate kinase phosphate energy shuttle underlies energetic communication in flagellar axonemes. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2539-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2539-1

Keywords

Navigation