Skip to main content
Log in

Gut microbial interactions based on network construction and bacterial pairwise cultivation

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Association networks are widely applied for the prediction of bacterial interactions in studies of human gut microbiomes. However, the experimental validation of the predicted interactions is challenging due to the complexity of gut microbiomes and the limited number of cultivated bacteria. In this study, we addressed this challenge by integrating in vitro time series network (TSN) associations and co-cultivation of TSN taxon pairs. Fecal samples were collected and used for cultivation and enrichment of gut microbiome on YCFA agar plates for 13 days. Enriched cells were harvested for DNA extraction and metagenomic sequencing. A total of 198 metagenome-assembled genomes (MAGs) were recovered. Temporal dynamics of bacteria growing on the YCFA agar were used to infer microbial association networks. To experimentally validate the interactions of taxon pairs in networks, we selected 24 and 19 bacterial strains from this study and from the previously established human gut microbial biobank, respectively, for pairwise co-cultures. The co-culture experiments revealed that most of the interactions between taxa in networks were identified as neutralism (51.67%), followed by commensalism (21.67%), amensalism (18.33%), competition (5%) and exploitation (3.33%). Genome-centric analysis further revealed that the commensal gut bacteria (helpers and beneficiaries) might interact with each other via the exchanges of amino acids with high biosynthetic costs, short-chain fatty acids, and/or vitamins. We also validated 12 beneficiaries by adding 16 additives into the basic YCFA medium and found that the growth of 66.7% of these strains was significantly promoted. This approach provides new insights into the gut microbiome complexity and microbial interactions in association networks. Our work highlights that the positive relationships in gut microbial communities tend to be overestimated, and that amino acids, short-chain fatty acids, and vitamins are contributed to the positive relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

The reconstructed metagenome-assembled genomes in the present study have been deposited in China National Microbiology Data Center (NMDC) with accession numbers NMDC10018525.

References

  • Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y., Xie, H., Zhong, H., et al. (2015). Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 852.

    Article  PubMed  Google Scholar 

  • Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19, 455–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter, N.T., Schmidt, A.W., Venkataraman, A., Kim, K.S., Waldron, C., and Schmidt, T.M. (2019). Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio 10, e02566–02518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browne, H.P., Forster, S.C., Anonye, B.O., Kumar, N., Neville, B.A., Stares, M.D., Goulding, D., and Lawley, T.D. (2016). Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533, 543–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaumeil, P.A., Mussig, A.J., Hugenholtz, P., and Parks, D.H. (2020). GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927.

    Article  CAS  Google Scholar 

  • Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Li, Y., Ye, J., Yu, C., Li, Z., et al. (2018). SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clavel, T., Henderson, G., Engst, W., Doré, J., and Blaut, M. (2006). Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol Ecol 55, 471–478.

    Article  CAS  PubMed  Google Scholar 

  • Cline, M.S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., Christmas, R., Avila-Campilo, I., Creech, M., Gross, B., et al. (2007). Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2, 2366–2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coker, O.O., Dai, Z., Nie, Y., Zhao, G., Cao, L., Nakatsu, G., Wu, W.K., Wong, S.H., Chen, Z., Sung, J.J.Y., et al. (2018). Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 67, 1024–1032.

    Article  CAS  PubMed  Google Scholar 

  • Duncan, S.H., Hold, G.L., Harmsen, H.J.M., Stewart, C.S., and Flint, H.J. (2002). Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 52, 2141–2146.

    CAS  PubMed  Google Scholar 

  • Fan, Y., and Pedersen, O. (2021). Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 19, 55–71.

    Article  CAS  PubMed  Google Scholar 

  • Faust, K., and Raes, J. (2012). Microbial interactions: from networks to models. Nat Rev Microbiol 10, 538–550.

    Article  CAS  PubMed  Google Scholar 

  • Fisher, C.K., and Mehta, P. (2014). Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE 9, e102451arXiv: 1402.0511.

  • Forster, S.C., Kumar, N., Anonye, B.O., Almeida, A., Viciani, E., Stares, M.D., Dunn, M., Mkandawire, T.T., Zhu, A., Shao, Y., et al. (2019). A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol 37, 186–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghoul, M., and Mitri, S. (2016). The ecology and evolution of microbial competition. Trends Microbiol 24, 833–845.

    Article  CAS  PubMed  Google Scholar 

  • Halfvarson, J., Brislawn, C.J., Lamendella, R., Vázquez-Baeza, Y., Walters, W.A., Bramer, L.M., D’Amato, M., Bonfiglio, F., McDonald, D., Gonzalez, A., et al. (2017). Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol 2, 17004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harcombe, W. (2010). Novel cooperation experimentally evolved between species. Evolution 64, 2166–2172.

    PubMed  Google Scholar 

  • Hijová, E., Bertková, I., and Stofilová, J. (2019). Dietary fibre as prebiotics in nutrition. Cent Eur J Public Health 27, 251–255.

    Article  PubMed  Google Scholar 

  • Hsieh, C.H., Glaser, S.M., Lucas, A.J., and Sugihara, G. (2005). Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature 435, 336–340.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, M.Z., Zhu, H.Z., Zhou, N., Liu, C., Jiang, C.Y., Wang, Y., and Liu, S.J. (2022). Droplet microfluidics-based high-throughput bacterial cultivation for validation of taxon pairs in microbial co-occurrence networks. Sci Rep 12, 18145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, M.D., Scott, J.J., Leray, M., Lucey, N., Bravo, L.M.R., Wied, W.L., and Altieri, A.H. (2021). Rapid ecosystem-scale consequences of acute deoxygenation on a Caribbean coral reef. Nat Commun 12, 4522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanazawa, A., Aida, M., Yoshida, Y., Kaga, H., Katahira, T., Suzuki, L., Tamaki, S., Sato, J., Goto, H., Azuma, K., et al. (2021). Effects of synbiotic supplementation on chronic inflammation and the gut microbiota in obese patients with type 2 diabetes mellitus: a randomized controlled study. Nutrients 13, 558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Fata, G., Weber, P., and Mohajeri, M.H. (2018). Probiotics and the gut immune system: indirect regulation. Probiotics Antimicro Prot 10, 11–21.

    Article  CAS  Google Scholar 

  • Lagkouvardos, I., Overmann, J., and Clavel, T. (2017). Cultured microbes represent a substantial fraction ofthe human and mouse gut microbiota. Gut Microbes 8, 493–503.

    Article  PubMed  PubMed Central  Google Scholar 

  • Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Du, M.X., Abuduaini, R., Yu, H.Y., Li, D.H., Wang, Y.J., Zhou, N., Jiang, M.Z., Niu, P.X., Han, S.S., et al. (2021a). Enlightening the taxonomy darkness of human gut microbiomes with a cultured biobank. Microbiome 9, 119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, C., Zhou, N., Du, M.X., Sun, Y.T., Wang, K., Wang, Y.J., Li, D.H., Yu, H.Y., Song, Y., Bai, B.B., et al. (2020). The Mouse Gut Microbial Biobank expands the coverage of cultured bacteria. Nat Commun 11, 79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, P., Zhang, T., Zheng, Y., Li, Q., Su, T., and Qi, Q. (2021b). Potential one-step strategy for PET degradation and PHB biosynthesis through co-cultivation of two engineered microorganisms. Eng Microbiol 1, 100003.

    Article  Google Scholar 

  • Liu, W., Fang, X., Zhou, Y., Dou, L., and Dou, T. (2022). Machine learning-based investigation of the relationship between gut microbiome and obesity status. Microbes Infect 24, 104892.

    Article  CAS  PubMed  Google Scholar 

  • Lohia, S., Vlahou, A., and Zoidakis, J. (2022). Microbiome in chronic kidney disease (CKD): an omics perspective. Toxins 14, 176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macmicking, J.D. (2017). Bacteria disarm host-defence proteins. Nature 551, 303–304.

    Article  CAS  PubMed  Google Scholar 

  • Mars, R.A.T., Yang, Y., Ward, T., Houtti, M., Priya, S., Lekatz, H.R., Tang, X., Sun, Z., Kalari, K.R., Korem, T., et al. (2020). Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 183, 1137–1140.

    Article  CAS  PubMed  Google Scholar 

  • Matchado, M.S., Lauber, M., Reitmeier, S., Kacprowski, T., Baumbach, J., Haller, D., and List, M. (2021). Network analysis methods for studying microbial communities: A mini review. Comput Struct Biotechnol J 19, 2687–2698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitri, S., and Foster, K.R. (2013). The genotypic view of social interactions in microbial communities. Annu Rev Genet 47, 247–273.

    Article  CAS  PubMed  Google Scholar 

  • Nash, A.K., Auchtung, T.A., Wong, M.C., Smith, D.P., Gesell, J.R., Ross, M.C., Stewart, C.J., Metcalf, G.A., Muzny, D.M., Gibbs, R.A., et al. (2017). The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J., Abe, F., and Osawa, R. (2016). Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 16, 90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Olm, M.R., Brown, C.T., Brooks, B., and Banfield, J.F. (2017). dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J 11, 2864–2868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer, J.D., and Foster, K.R. (2022). Bacterial species rarely work together. Science 376, 581–582.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Z., Hu, Y., Huang, Z., Han, N., Li, Y., Zhuang, X., Yin, J., Peng, H., Gao, Q., Zhang, W., et al. (2022). Alterations in gut microbiota and metabolites associated with altitude-induced cardiac hypertrophy in rats during hypobaric hypoxia challenge. Sci China Life Sci 65, 2093–2113

    Article  CAS  PubMed  Google Scholar 

  • Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.A., and Hugenholtz, P. (2018). A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol 36, 996–1004.

    Article  CAS  PubMed  Google Scholar 

  • Peng, W., Yi, P., Yang, J., Xu, P., Wang, Y., Zhang, Z., Huang, S., Wang, Z., and Zhang, C. (2018). Association of gut microbiota composition and function with a senescence-accelerated mouse model of Alzheimer’s Disease using 16S rRNA gene and metagenomic sequencing analysis. Aging 10, 4054–4065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrov, V.A., Saltykova, I.V., Zhukova, I.A., Alifirova, V.M., Zhukova, N.G., Dorofeeva, Y.B., Tyakht, A.V., Kovarsky, B.A., Alekseev, D.G., Kostryukova, E.S., et al. (2017). Analysis of gut microbiota in patients with Parkinson’s disease. Bull Exp Biol Med 162, 734–737.

    Article  CAS  PubMed  Google Scholar 

  • Poyet, M., Groussin, M., Gibbons, S.M., Avila-Pacheco, J., Jiang, X., Kearney, S.M., Perrotta, A.R., Berdy, B., Zhao, S., Lieberman, T.D., et al. (2019). A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat Med 25, 1442–1452.

    Article  CAS  PubMed  Google Scholar 

  • Qian, Y., Yang, X., Xu, S., Huang, P., Li, B., Du, J., He, Y., Su, B., Xu, L.M., Wang, L., et al. (2020). Gut metagenomics-derived genes as potential biomarkers of Parkinson’s disease. Brain 143, 2474–2489.

    Article  PubMed  Google Scholar 

  • Ruaud, A., Esquivel-Elizondo, S., de la Cuesta-Zuluaga, J., Waters, J.L., Angenent, L.T., Youngblut, N.D., and Ley, R.E. (2020). Syntrophy via interspecies H2 transfer between Christensenella and Methanobrevibacter underlies their global cooccurrence in the human gut. mBio 11, e03235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069.

    Article  CAS  PubMed  Google Scholar 

  • Sugihara, G., May, R., Ye, H., Hsieh, C., Deyle, E., Fogarty, M., and Munch, S. (2012). Detecting causality in complex ecosystems. Science 338, 496–500.

    Article  CAS  PubMed  Google Scholar 

  • Uritskiy, G.V., DiRuggiero, J., and Taylor, J. (2018). MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158.

    Article  PubMed  PubMed Central  Google Scholar 

  • Venturelli, O.S., Carr, A.V., Fisher, G., Hsu, R.H., Lau, R., Bowen, B.P., Hromada, S., Northen, T., and Arkin, A.P. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Mol Syst Biol 14, e8157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss, A.S., Burrichter, A.G., Durai Raj, A.C., von Strempel, A., Meng, C., Kleigrewe, K., Münch, P.C., Rössler, L., Huber, C., Eisenreich, W., et al. (2022). In vitro interaction network of a synthetic gut bacterial community. ISME J 16, 1095–1109.

    Article  CAS  PubMed  Google Scholar 

  • Xia, L.C., Steele, J.A., Cram, J.A., Cardon, Z.G., Simmons, S.L., Vallino, J.J., Fuhrman, J.A., and Sun, F. (2011). Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst Biol 5, S15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, J., Wen, T., Yang, S., Zhang, C., Zhao, M., Niu, G., Xie, P., Liu, X., Zhao, X., Shen, Q., et al. (2023). Growth substrates alter aboveground plant microbial and metabolic properties thereby influencing insect herbivore performance. Sci China Life Sci 66, 1728–1741.

    Article  PubMed  Google Scholar 

  • Zimmermann, J., Kaleta, C., and Waschina, S. (2021). gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biol 22, 81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (2021YFA0717002) and Taishan Young Scholars (tsqn202306029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulin Wang or Shuang-Jiang Liu.

Ethics declarations

The author(s) declare that they have no conflict of interest. This study was approved by the Research Ethics Committee of the Institute of Microbiology, Chinese Academy of Science. All subjects provided informed consent to be included in the study.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, MZ., Liu, C., Xu, C. et al. Gut microbial interactions based on network construction and bacterial pairwise cultivation. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2537-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2537-0

Navigation