Skip to main content
Log in

Growth substrates alter aboveground plant microbial and metabolic properties thereby influencing insect herbivore performance

  • Research Paper
  • From CAS & CAE Members
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The gut microbiome of plant-eaters is affected by the food they eat, but it is currently unclear how the plant metabolome and microbiome are influenced by the substrate the plant grows in and how this subsequently impacts the feeding behavior and gut microbiomes of insect herbivores. Here, we use Plutella xylostella caterpillars and show that the larvae prefer leaves of cabbage plants growing in a vermiculite substrate to those from plants growing in conventional soil systems. From a plant metabolomics analysis, we identified 20 plant metabolites that were related to caterpillar feeding performance. In a bioassay, the effects of these plant metabolites on insects’ feeding were tested. Nitrate and compounds enriched with leaves of soilless cultivation promoted the feeding of insects, while compounds enriched with leaves of plants growing in natural soil decreased feeding. Several microbial groups (e.g., Sporolactobacillus, Haliangium) detected inside the plant correlated with caterpillar feeding performance and other microbial groups, such as Ramlibacter and Methylophilus, correlated with the gut microbiome. Our results highlight the role of growth substrates on the food metabolome and microbiome and on the feeding performance and the gut microbiome of plant feeders. It illustrates how belowground factors can influence the aboveground properties of plant-animal systems, which has important implications for plant growth and pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. Raw sequence data obtained in this study have been deposited in Genome Sequence Archive in the BIG Data Center, Chinese Academy of Sciences, under accession code CRA004812. All data and code are available on GitHub (https://github.com/taowenmicro/Yuan-et-al.2021).

References

  • Ahuja, I., Rohloff, J., and Bones, A.M. (2011). Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. In: Lichtfouse, E., Hamelin, M., Navarrete, M., and Debaeke, P., eds. Sustainable Agriculture Volume 2. Dordrecht: Springer. 623–670.

    Chapter  Google Scholar 

  • Altieri, M.A., and Nicholls, C.I. (2003). Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil Tillage Res 72, 203–211.

    Article  Google Scholar 

  • Asnicar, F., Berry, S.E., Valdes, A.M., Nguyen, L.H., Piccinno, G., Drew, D.A., Leeming, E., Gibson, R., Le Roy, C., Khatib, H.A., et al. (2021). Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 27, 321–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bengmark, S. (1998). Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut 42, 2–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezemer, T., and van Dam, N. (2005). Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20, 617–624.

    Article  PubMed  Google Scholar 

  • Blundell, R., Schmidt, J.E., Igwe, A., Cheung, A.L., Vannette, R.L., Gaudin, A.C.M., and Casteel, C.L. (2020). Organic management promotes natural pest control through altered plant resistance to insects. Nat Plants 6, 483–491.

    Article  CAS  PubMed  Google Scholar 

  • Callegari, M., Jucker, C., Fusi, M., Leonardi, M.G., Daffonchio, D., Borin, S., Savoldelli, S., and Crotti, E. (2020). Hydrolytic profile of the culturable gut bacterial community associated with Hermetia illucens. Front Microbiol 11.

  • Chen, Y., Zeng, L., Liao, Y., Li, J., Zhou, B., Yang, Z., and Tang, J. (2020). Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the black tea (Camellia sinensis) manufacturing process. Foods 9, 66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi, F., Shen, S.H., Cheng, H.P., Jing, Y.X., Yanni, Y.G., and Dazzo, F.B. (2005). Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71, 7271–7278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Alessandro, A., Taamalli, M., Gevi, F., Timperio, A.M., Zolla, L., and Ghnaya, T. (2013). Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics. J Proteome Res 12, 4979–4997.

    Article  PubMed  Google Scholar 

  • De Vos, M., Van Oosten, V.R., Van Poecke, R.M.P., Van Pelt, J.A., Pozo, M.J., Mueller, M.J., Buchala, A.J., Métraux, J.P., Van Loon, L.C., Dicke, M., et al. (2005). Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant Microbe Interact 18, 923–937.

    Article  CAS  PubMed  Google Scholar 

  • Ding, S., Yan, W., Fang, J., Jiang, H., and Liu, G. (2021). Potential role of Lactobacillus plantarum in colitis induced by dextran sulfate sodium through altering gut microbiota and host metabolism in murine model. Sci China Life Sci 64, 1906–1916.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, P. (2003). VEGAN, a package of R functions for community ecology. J Veg Sci 14, 927–930.

    Article  Google Scholar 

  • Edgar, R.C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

    Article  CAS  PubMed  Google Scholar 

  • Eilers, E.J., Veit, D., Rillig, M.C., Hansson, B.S., Hilker, M., and Reinecke, A. (2016). Soil substrates affect responses of root feeding larvae to their hosts at multiple levels: orientation, locomotion and feeding. Basic Appl Ecol 17, 115–124.

    Article  Google Scholar 

  • Flanagan, P.W., and Cleve, K.V. (1983). Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems. Can J For Res 13, 795–817.

    Article  CAS  Google Scholar 

  • Forcat, S., Bennett, M.H., Mansfield, J.W., and Grant, M.R. (2008). A rapid and robust method for simultaneously measuring changes in the phytohormones ABA, JA and SA in plants following biotic and abiotic stress. Plant Methods 4, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill, S.R., Pop, M., DeBoy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., and Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes, S.I.F., Kielak, A.M., Hannula, S.E., Heinen, R., Jongen, R., Keesmaat, I., De Long, J.R., and Bezemer, T.M. (2020). Microbiomes of a specialist caterpillar are consistent across different habitats but also resemble the local soil microbial communities. Anim Microbiome 2, 1–2.

    Article  CAS  Google Scholar 

  • Hammer, T.J., and Bowers, M.D. (2015). Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179, 1–14.

    Article  PubMed  Google Scholar 

  • Hannula, S.E., Zhu, F., Heinen, R., and Bezemer, T.M. (2019). Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat Commun 10, 1–9.

    Article  CAS  Google Scholar 

  • Hansen, J., and Møller, I. (1975). Percolation of starch and soluble carbohydrates from plant tissue for quantitative determination with anthrone. Anal Biochem 68, 87–94.

    Article  CAS  PubMed  Google Scholar 

  • He, F. (2011). Bradford protein assay. Bio-protocol, 1, e45.

    Google Scholar 

  • Kikuchi, Y., Hosokawa, T., and Fukatsu, T. (2007). Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 73, 4308–4316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura, I., Miyamoto, J., Ohue-Kitano, R., Watanabe, K., Yamada, T., Onuki, M., Aoki, R., Isobe, Y., Kashihara, D., Inoue, D., et al. (2020). Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science 367, eaaw8429.

    Article  CAS  PubMed  Google Scholar 

  • Kind, T., Wohlgemuth, G., Lee, D.Y., Lu, Y., Palazoglu, M., Shahbaz, S., and Fiehn, O. (2009). FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81, 10038–10048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollner, T.G., Held, M., Lenk, C., Hiltpold, I., Turlings, T.C.J., Gershenzon, J., and Degenhardt, J.. (2008). A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20, 482–494.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maidak, B.L., Cole, J.R., Lilburn, T.G., Parker, C.T., Saxman, P.R., Stredwick, J.M., Garrity, G.M., Li, B., Olsen, G.J., Pramanik, S., et al. (2000). The RDP (ribosomal database project) continues. Nucleic Acids Res 28, 173–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marti, G., Erb, M., Boccard, J., Glauser, G., Doyen, G.R., Villard, N., Robert, C.A.M., Turlings, T.C.J., Rudaz, S., and Wolfender, J.L. (2013). Metabolomics reveals herbivore-induced metabolites of resistance and susceptibility in maize leaves and roots. Plant Cell Environ 36, 621–639.

    Article  CAS  PubMed  Google Scholar 

  • Mattson, W.J. (1980). Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11, 119–161.

    Article  Google Scholar 

  • Megali, L., Glauser, G., and Rasmann, S. (2014). Fertilization with beneficial microorganisms decreases tomato defenses against insect pests. Agron Sustain Dev 34, 649–656.

    Article  CAS  Google Scholar 

  • Mewis, I., Appel, H.M., Hom, A., Raina, R., and Schultz, J.C. (2005). Major signaling pathways modulate Arabidopsis glucosinolate accumulation and response to both phloem-feeding and chewing insects. Plant Physiol 138, 1149–1162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikulska, M., Bomsel, J.L., and Rychter, A.M. (1998). The influence of phosphate deficiency on photosynthesis, respiration and adenine nucleotide pool in bean leaves. Photosynthetica 35, 79–88.

    Article  CAS  Google Scholar 

  • Miyauchi, E., Kim, S.W., Suda, W., Kawasumi, M., Onawa, S., Taguchi-Atarashi, N., Morita, H., Taylor, T.D., Hattori, M., and Ohno, H. (2020). Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature 585, 102–106.

    Article  CAS  PubMed  Google Scholar 

  • Muratore, M., Sun, Y., and Prather, C. (2020). Environmental nutrients alter bacterial and fungal gut microbiomes in the common meadow katydid, Orchelimum vulgare. Front Microbiol 11, 557980.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nemet, I., Saha, P.P., Gupta, N., Zhu, W., Romano, K.A., Skye, S.M., Cajka, T., Mohan, M.L., Li, L., Wu, Y., et al. (2020). A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180, 862–877.e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman, R.J., and Stucki, J.W. (1981). The determination of nitrate and nitrite in soil extracts by ultraviolet spectrophotometry. Soil Sci Soc Am J 45, 347–353.

    Article  CAS  Google Scholar 

  • Nosarzewski, M., Downie, A.B., Wu, B., and Archbold, D.D. (2012). The role of SORBITOL DEHYDROGENASE in Arabidopsis thaliana. Funct Plant Biol 39, 462.

    Article  CAS  PubMed  Google Scholar 

  • Ohgushi, T. (2005). Indirect interaction webs: herbivore-induced effects through trait change in plants. Annu Rev Ecol Evol Syst 36, 81–105.

    Article  Google Scholar 

  • Pan, X., Welti, R., and Wang, X. (2008). Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69, 1773–1781.

    Article  CAS  PubMed  Google Scholar 

  • Pichersky, E., and Gershenzon, J. (2002). The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5, 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Raza, M.F., Wang, Y., Cai, Z., Bai, S., Yao, Z., Awan, U.A., Zhang, Z., Zheng, W., and Zhang, H. (2020). Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis. PLoS Pathog 16, e1008441.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyes, R.D.H., and Cafaro, M.J. (2015). Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity. J Basic Microbiol 55, 11–21.

    Article  CAS  PubMed  Google Scholar 

  • Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosen, C.J., and Allan, D.L. (2007). Exploring the benefits of organic nutrient sources for crop production and soil quality. HortTechnology 17, 422–430.

    Article  CAS  Google Scholar 

  • Russolillo, G. (2012). Non-metric partial least squares. Electron J Stat 6, 1641.

    Article  Google Scholar 

  • Santos-Garcia, D., Mestre-Rincon, N., Zchori-Fein, E., and Morin, S. (2020). Inside out: microbiota dynamics during host-plant adaptation of whiteflies. ISME J 14, 847–856.

    Article  PubMed  PubMed Central  Google Scholar 

  • SharathKumar, M., Heuvelink, E., and Marcelis, L.F.M. (2020). Vertical farming: moving from genetic to environmental modification. Trends Plant Sci 25, 724–727.

    Article  CAS  PubMed  Google Scholar 

  • Shelp, B.J., Bown, A.W., and McLean, M.D. (1999). Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4, 446–452.

    Article  CAS  PubMed  Google Scholar 

  • Shepherd, E.S., DeLoache, W.C., Pruss, K.M., Whitaker, W.R., and Sonnenburg, J.L. (2018). An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugio, A., Dubreuil, G., Giron, D., and Simon, J.C. (2015). Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms. J Exp Bot 66, 467–478.

    Article  CAS  PubMed  Google Scholar 

  • Tenenboim, H., and Brotman, Y. (2016). Omic relief for the biotically stressed: metabolomics of plant biotic interactions. Trends Plant Sci 21, 781–791.

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden, M.G.A., Bardgett, R.D., and van Straalen, N.M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11, 296–310.

    Article  PubMed  Google Scholar 

  • Van Poecke, R.M.P., Posthumus, M.A., and Dicke, M. (2001). Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. J Chem Ecol 27, 1911–1928.

    Article  CAS  PubMed  Google Scholar 

  • Walters, W., Hyde, E.R., Berg-Lyons, D., Ackermann, G., Humphrey, G., Parada, A., Gilbert, J.A., Jansson, J.K., Caporaso, J.G., Fuhrman, J.A., et al. (2016). Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009–15.

    Article  PubMed  Google Scholar 

  • Wen, T., Xie, P., Yang, S., Niu, G., Liu, X., Ding, Z., Xue, C., Liu, Y., Shen, Q., and Yuan, J. (2022). ggClusterNet: An R package for microbiome network analysis and modularity-based multiple network layouts. iMeta 1, e32.

    Article  Google Scholar 

  • Winter, H., Lohaus, G., and Heldt, H.W. (1992). Phloem transport of amino acids in relation to their cytosolic levels in barley leaves. Plant Physiol 99, 996–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, X., Feng, L., Zhao, L., Liu, X., Hassani, D., and Huang, D. (2018). Effect of glycine nitrogen on lettuce growth under soilless culture: a metabolomics approach to identify the main changes occurred in plant primary and secondary metabolism. J Sci Food Agric 98, 467–477.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, J., Wen, T., Zhang, H., Zhao, M., Penton, C.R., Thomashow, L.S., and Shen, Q. (2020). Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt. ISME J 14, 2936–2950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, J., Zhao, J., Wen, T., Zhao, M., Li, R., Goossens, P., Huang, Q., Bai, Y., Vivanco, J.M., Kowalchuk, G.A., et al. (2018). Root exudates drive the soil-borne legacy of aboveground pathogen infection. Microbiome 6, 1–2.

    Article  Google Scholar 

  • Zeisel, A., Zuk, O., and Domany, E. (2011). FDR control with adaptive procedures and FDR monotonicity. Ann Appl Stat 5, 943.

    Article  Google Scholar 

  • Zhu, Y.X., Song, Z.R., Zhang, Y.Y., Hoffmann, A.A., and Hong, X.Y. (2021). Spider mites singly infected with either Wolbachia or Spiroplasma have reduced thermal tolerance. Front Microbiol 12, 706321.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zogli, P., Pingault, L., Grover, S., and Louis, J. (2020). Ento(o)mics: the intersection of ‘omic’ approaches to decipher plant defense against sapsucking insect pests. Curr Opin Plant Biol 56, 153–161.

    Article  CAS  PubMed  Google Scholar 

  • Zytynska, S.E., Eicher, M., Rothballer, M., and Weisser, W.W. (2020). Microbial-mediated plant growth promotion and pest suppression varies under climate change. Front Plant Sci 11, 573578.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (42090060, 42277297), Natural Science Foundation of Jiangsu Province (BK20211577), and Innovative Research Team Development Plan of the Ministry of Education of China (IRT_17R56). J. Y. was supported by the Qing Lan Project of Jiangsu Province. We thank Dr. Xiaoli Bing, Xiaofeng Xia, and Dr. Stefan Geisen for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qirong Shen.

Ethics declarations

Compliance and ethics The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Wen, T., Yang, S. et al. Growth substrates alter aboveground plant microbial and metabolic properties thereby influencing insect herbivore performance. Sci. China Life Sci. 66, 1728–1741 (2023). https://doi.org/10.1007/s11427-022-2279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2279-5

Keywords

Navigation