Skip to main content
Log in

Global convergence in terrestrial gross primary production response to atmospheric vapor pressure deficit

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Atmospheric vapor pressure deficit (VPD) increases with climate warming and may limit plant growth. However, gross primary production (GPP) responses to VPD remain a mystery, offering a significant source of uncertainty in the estimation of global terrestrial ecosystems carbon dynamics. In this study, in-situ measurements, satellite-derived data, and Earth System Models (ESMs) simulations were analysed to show that the GPP of most ecosystems has a similar threshold in response to VPD: first increasing and then declining. When VPD exceeds these thresholds, atmospheric drought stress reduces soil moisture and stomatal conductance, thereby decreasing the productivity of terrestrial ecosystems. Current ESMs underscore CO2 fertilization effects but predict significant GPP decline in low-latitude ecosystems when VPD exceeds the thresholds. These results emphasize the impacts of climate warming on VPD and propose limitations to future ecosystems productivity caused by increased atmospheric water demand. Incorporating VPD, soil moisture, and canopy conductance interactions into ESMs enhances the prediction of terrestrial ecosystem responses to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data and code availability

The carbon flux dataset is available on FLUXNET2015 (https://fluxnet.org/data/fluxnet2015-dataset/). The GOSIF GPP dataset is available at the Global Ecology Data Repository (https://globalecology.unh.edu/data/GOSIF-GPP.html). The TerraClimate dataset is available from the Earth Engine Data Catalog (http://www.climatologylab.org/terraclimate.html). The SPEI dataset is available at http://digital.csic.es/handle/10261/23906). The ESA CCI SM dataset is available at the European Space Agency Climate Change Initiative (https://esa-soilmoisture-cci.org/). The Global-AI_PET_v3 database is available from the CGIAR-CSI GeoPortal (https://cgiarcsi.community). The CMIP5 and CMIP6 Earth System Model simulations are from the Earth System Grid Federation (https://esgf-node.llnl.gov/search/cmip5/ and https://esgf-node.llnl.gov/search/cmip6/). The R code used for data processing and analysis is available at https://github.com/chaodan/Huang_et_al._manuscript-Codeand-data.

References

  • Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., and Hegewisch, K.C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci Data 5, 170191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beguería, S., Vicente-Serrano, S., Angulo-Martinez, M. (2010). A multiscalar global drought dataset: the SPEI base a new gridded product for the analysis of drought variability and impacts. Bull Amer Meteor Soc doi:https://doi.org/10.1175/2010BAMS2988.1.

  • Brodribb, T.J., and Holbrook, N.M. (2003). Changes in leaf hydraulic conductance during leaf shedding in seasonally dry tropical forest. New Phytol 158, 295–303.

    Article  Google Scholar 

  • Chen, C., Riley, W.J., Prentice, I.C., and Keenan, T.F. (2022). CO2 fertilization of terrestrial photosynthesis inferred from site to global scales. Proc Natl Acad Sci USA 119, e2115627119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, Y., Liu, L., Cheng, L., Fa, K., Liu, X., Huo, Z., and Huang, G. (2022). A shift in the dominant role of atmospheric vapor pressure deficit and soil moisture on vegetation greening in China. J Hydrol 615, 128680.

    Article  Google Scholar 

  • Ding, J., Yang, T., Zhao, Y., Liu, D., Wang, X., Yao, Y., Peng, S., Wang, T., and Piao, S. (2018). Increasingly important role of atmospheric aridity on tibetan alpine grasslands. Geophys Res Lett 45, 2852–2859.

    Article  Google Scholar 

  • Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., et al. (2017). ESA CCI soil moisture for improved earth system understanding: state-of-the art and future directions. Remote Sens Environ 203, 185–215.

    Article  Google Scholar 

  • Ficklin, D.L., and Novick, K.A. (2017). Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. JGR Atmos 122, 2061–2079.

    Article  Google Scholar 

  • Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., and Huang, X. (2010). MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens Environ 114, 168–182.

    Article  Google Scholar 

  • Fu, Z., Ciais, P., Prentice, I.C., Gentine, P., Makowski, D., Bastos, A., Luo, X., Green, J. K., Stoy, P.C., Yang, H., et al. (2022). Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat Commun 13, 989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gampe, D., Zscheischler, J., Reichstein, M., O’Sullivan, M., Smith, W.K., Sitch, S., and Buermann, W. (2021). Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat Clim Chang 11, 772–779.

    Article  Google Scholar 

  • Gao, S., Su, P.X., Yan, Q.D., and Ding, S.S. (2010). Canopy and leaf gas exchange of Haloxylon ammodendron under different soil moisture regimes. Sci China Life Sci 53, 718–728.

    Article  PubMed  Google Scholar 

  • Girardin, M.P., Bouriaud, O., Hogg, E.H., Kurz, W., Zimmermann, N.E., Metsaranta, J. M., de Jong, R., Frank, D.C., Esper, J., Büntgen, U., et al. (2016). No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc Natl Acad Sci USA 113, E8406–E8414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grantz, D.A., Zinsmeister, D., and Burkhardt, J. (2018). Ambient aerosol increases minimum leaf conductance and alters the aperture-flux relationship as stomata respond to vapor pressure deficit (VPD). New Phytol 219, 275–286.

    Article  PubMed  Google Scholar 

  • Green, J.K., Berry, J., Ciais, P., Zhang, Y., and Gentine, P. (2020). Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci Adv 6, eabb7232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grossiord, C., Buckley, T.N., Cernusak, L.A., Novick, K.A., Poulter, B., Siegwolf, R.T. W., Sperry, J.S., and McDowell, N.G. (2020). Plant responses to rising vapor pressure deficit. New Phytol 226, 1550–1566.

    Article  PubMed  Google Scholar 

  • Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W. (2019). Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst Sci Data 11, 717–739.

    Article  Google Scholar 

  • Guerrieri, R., Belmecheri, S., Ollinger, S.V., Asbjornsen, H., Jennings, K., Xiao, J., Stocker, B.D., Martin, M., Hollinger, D.Y., Bracho-Garrillo, R., et al. (2019). Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc Natl Acad Sci USA 116, 16909–16914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haverd, V., Smith, B., Canadell, J.G., Cuntz, M., Mikaloff-Fletcher, S., Farquhar, G., Woodgate, W., Briggs, P.R., and Trudinger, C.M. (2020). Higher than expected CO2 fertilization inferred from leaf to global observations. Glob Change Biol 26, 2390–2402.

    Article  Google Scholar 

  • He, B., Chen, C., Yuan, W., Chen, H., Chen, D., Zhang, Y., Guo, L., Zhao, X., Liu, X., et al. (2021). Worldwide impacts of atmospheric vapor pressure deficit on the interannual variability of terrestrial carbon sinks. Natl Sci Rev 9, 4nwab150.

    Google Scholar 

  • Hsiao, J., Swann, A.L.S., and Kim, S.H. (2019). Maize yield under a changing climate: The hidden role of vapor pressure deficit. Agric For Meteor 279, 107692.

    Article  Google Scholar 

  • Hufkens, K., Keenan, T.F., Flanagan, L.B., Scott, R.L., Bernacchi, C.J., Joo, E., Brunsell, N.A., Verfaillie, J., and Richardson, A.D. (2016). Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nat Clim Change 6, 710–714.

    Article  Google Scholar 

  • Keenan, T.F., Hollinger, D.Y., Bohrer, G., Dragoni, D., Munger, J.W., Schmid, H.P., and Richardson, A.D. (2013). Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327.

    Article  CAS  PubMed  Google Scholar 

  • Keenan, T.F., Prentice, I.C., Canadell, J.G., Williams, C.A., Wang, H., Raupach, M., and Collatz, G.J. (2016). Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat Commun 7, 13428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimm, H., Guan, K., Gentine, P., Wu, J., Bernacchi, C.J., Sulman, B.N., Griffis T.J., and Lin, C. (2020). Redefining droughts for the U.S. Corn Belt: The dominant role of atmospheric vapor pressure deficit over soil moisture in regulating stomatal behavior of Maize and Soybean. Agric For Meteorol 287, 107930.

    Article  Google Scholar 

  • Klein, T., Shpringer, I., Fikler, B., Elbaz, G., Cohen, S., and Yakir, D. (2013). Relationships between stomatal regulation, water-use, and water-use efficiency of two coexisting key Mediterranean tree species. For Ecol Manage 302, 34–42.

    Article  Google Scholar 

  • Knauer, J., El-Madany, T.S., Zaehle, S., and Migliavacca, M. (2018). Bigleaf-An R package for the calculation of physical and physiological ecosystem properties from eddy covariance data.. PLoS One 13, e0201114.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lansu, E.M., van Heerwaarden, C.C., Stegehuis, A.I., and Teuling, A.J. (2020). Atmospheric aridity and apparent soil moisture drought in european forest during heat waves. Geophys Res Lett 47, e2020GL087091.

    Article  Google Scholar 

  • Leuzinger, S., and Körner, C. (2007). Water savings in mature deciduous forest trees under elevated CO2. Glob Change Biol 13, 2498–2508.

    Article  Google Scholar 

  • Li, and Xiao (2019). Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens 11, 2563.

    Article  Google Scholar 

  • Lin, C., Gentine, P., Huang, Y., Guan, K., Kimm, H., and Zhou, S. (2018). Diel ecosystem conductance response to vapor pressure deficit is suboptimal and independent of soil moisture. Agric For Meteor 250–251, 24–34.

    Article  Google Scholar 

  • Lin, M.T., Salihovic, H., Clark, F.K., and Hanson, M.R. (2022). Improving the efficiency of Rubisco by resurrecting its ancestors in the family Solanaceae. Sci Adv 8, eabm6871.

    Article  Google Scholar 

  • Lin, Y.S., Medlyn, B.E., Duursma, R.A., Prentice, I.C., Wang, H., Baig, S., Eamus, D., de Dios, V.R., Mitchell, P., Ellsworth, D.S., et al. (2015). Optimal stomatal behaviour around the world. Nat Clim Change 5, 459–464.

    Article  CAS  Google Scholar 

  • Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Li, S., and Seneviratne, S.I. (2019). Revisiting assessments of ecosystem drought recovery. Environ Res Lett 14, 114028.

    Article  Google Scholar 

  • Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Li, S., and Seneviratne, S.I. (2020). Soil moisture dominates dryness stress on ecosystem production globally. Nat Commun 11, 4892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Sun, G., Fu, Z., Ciais, P., Feng, X., Li, J., and Fu, B. (2023). Compound droughts slow down the greening of the Earth. Glob Change Biol 29, 3072–3084.

    Article  CAS  Google Scholar 

  • López, J., Way, D.A., and Sadok, W. (2021). Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob Chang Biol 27, 1704–1720.

    Article  PubMed  PubMed Central  Google Scholar 

  • McDowell, N.G., Sapes, G., Pivovaroff, A., Adams, H.D., Allen, C.D., Anderegg, W.R.L., Arend, M., Breshears, D.D., Brodribb, T., Choat, B., et al. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat Rev Earth Environ 3, 294–308.

    Article  CAS  Google Scholar 

  • Meinzer, F.C., Woodruff, D.R., Marias, D.E., Smith, D.D., McCulloh, K.A., Howard, A. R., and Magedman, A.L. (2016). Mapping ‘hydroscapes’ along the iso-to anisohydric continuum of stomatal regulation of plant water status. Ecol Lett 19, 1343–1352.

    Article  PubMed  Google Scholar 

  • Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C., Papuga, S.A., Blanken, P.D., Noormets, A., Sulman, B.N., et al. (2016). The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat Clim Change 6, 1023–1027.

    Article  CAS  Google Scholar 

  • Niu, S., Song, L., Wang, J., Luo, Y., and Yu, G. (2023). Dynamic carbon-nitrogen coupling under global change. Sci China Life Sci 66, 771–782.

    Article  CAS  PubMed  Google Scholar 

  • Obermeier, W.A., Lehnert, L.W., Kammann, C.I., Müller, C., Grünhage, L., Luterbacher, J., Erbs, M., Moser, G., Seibert, R., Yuan, N., et al. (2017). Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat Clim Change 7, 137–141.

    Article  CAS  Google Scholar 

  • Oogathoo, S., Houle, D., Duchesne, L., and Kneeshaw, D. (2020). Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agric For Meteor 291, 108063.

    Article  Google Scholar 

  • Pan, Y., Jackson, R.B., Hollinger, D.Y., Phillips, O.L., Nowak, R.S., Norby, R.J., Oren, R., Reich, P.B., Lüscher, A., Mueller, K.E., et al. (2022). Contrasting responses of woody and grassland ecosystems to increased CO2 as water supply varies. Nat Ecol Evol 6, 315–323.

    Article  PubMed  Google Scholar 

  • Peñuelas, J., Canadell, J.G., and Ogaya, R. (2011). Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob Ecol Biogeography 20, 597–608.

    Article  Google Scholar 

  • Prentice, I.C., Dong, N., Gleason, S.M., Maire, V., and Wright, I.J. (2014). Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol Lett 17, 82–91.

    Article  PubMed  Google Scholar 

  • Rigden, A.J., Mueller, N.D., Holbrook, N.M., Pillai, N., and Huybers, P. (2020). Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat Food 1, 127–133.

    Article  CAS  PubMed  Google Scholar 

  • Roby, M.C., Scott, R.L., and Moore, D.J.P. (2020). High vapor pressure deficit decreases the productivity and water use efficiency of rain-induced pulses in semiarid ecosystems. JGR BioGeoscis 125, e2020JG005665.

    Article  Google Scholar 

  • Rogers, A., Medlyn, B.E., Dukes, J.S., Bonan, G., von Caemmerer, S., Dietze, M.C., Kattge, J., Leakey, A.D.B., Mercado, L.M., Niinemets, Ü., et al. (2017). A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol 213, 22–42.

    Article  PubMed  Google Scholar 

  • Song, Y., Jiao, W., Wang, J., and Wang, L. (2022). Increased global vegetation productivity despite rising atmospheric dryness over the last two decades. Earth’s Future 10, e2021EF002634..

    Article  Google Scholar 

  • Sulman, B.N., Roman, D.T., Yi, K., Wang, L., Phillips, R.P., and Novick, K.A. (2016). High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophys Res Lett 43, 9686–9695.

    Article  CAS  Google Scholar 

  • Sun, Y., Yang, Y., Zhao, X., Tang, Z., Wang, S., and Fang, J. (2021). Global patterns and climatic drivers of above- and belowground net primary productivity in grasslands. Sci China Life Sci 64, 739–751.

    Article  CAS  PubMed  Google Scholar 

  • Swann, A.L.S., Hoffman, F.M., Koven, C.D., and Randerson, J.T. (2016). Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc Natl Acad Sci USA 113, 10019–10024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, J., Bolstad, P.V., Ewers, B.E., Desai, A.R., Davis, K.J., and Carey, E.V. (2006). Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States.. J Geophys Res Biogeosci 111, G02009.

    Article  Google Scholar 

  • Terrer, C., Jackson, R.B., Prentice, I.C., Keenan, T.F., Kaiser, C., Vicca, S., Fisher, J.B., Reich, P.B., Stocker, B.D., Hungate, B.A., et al. (2019). Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat Clim Chang 9, 684–689.

    Article  CAS  Google Scholar 

  • van der Sleen, P., Groenendijk, P., Vlam, M., Anten, N.P.R., Boom, A., Bongers, F., Pons, T.L., Terburg, G., and Zuidema, P.A. (2015). No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat Geosci 8, 24–28.

    Article  CAS  Google Scholar 

  • Villarreal, S., and Vargas, R. (2021). Representativeness of FLUXNET sites across Latin America. JGR BioGeoscis 126, e2020JG006090.

    Article  Google Scholar 

  • Wang, S., Zhang, Y., Ju, W., Chen, J.M., Ciais, P., Cescatti, A., Sardans, J., Janssens, I. A., Wu, M., Berry, J.A., et al. (2020a). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Sperry, J.S., Anderegg, W.R.L., Venturas, M.D., and Trugman, A.T. (2020b). A theoretical and empirical assessment of stomatal optimization modeling. New Phytol 227, 311–325.

    Article  CAS  PubMed  Google Scholar 

  • Will, R.E., Wilson, S.M., Zou, C.B., and Hennessey, T.C. (2013). Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. New Phytol 200, 366–374.

    Article  PubMed  Google Scholar 

  • Wu, X., Liu, H., Li, X., Piao, S., Ciais, P., Guo, W., Yin, Y., Poulter, B., Peng, C., Viovy, N., et al. (2017). Higher temperature variability reduces temperature sensitivity of vegetation growth in Northern Hemisphere. Geophys Res Lett 44, 6173–6181.

    Article  Google Scholar 

  • Yin, G., Verger, A., Descals, A., Filella, I., and Peñuelas, J. (2022). Nonlinear thermal responses outweigh water limitation in the attenuated effect of climatic warming on photosynthesis in northern ecosystems. Geophys Res Lett 49, e2022GL100096.

    Article  Google Scholar 

  • Yuan, W., Zheng, Y., Piao, S., Ciais, P., Lombardozzi, D., Wang, Y., Ryu, Y., Chen, G., Dong, W., Hu, Z., et al. (2019). Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci Adv 5, eaax1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Ficklin, D.L., Manzoni, S., Wang, L., Way, D., Phillips, R.P., and Novick, K. A. (2019). Response of ecosystem intrinsic water use efficiency and gross primary productivity to rising vapor pressure deficit. Environ Res Lett 14, 074023.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhang, Y., Lian, X., Zheng, Z., Zhao, G., Zhang, T., Xu, M., Huang, K., Chen, N., Li, J., et al. (2023). Enhanced dominance of soil moisture stress on vegetation growth in Eurasian drylands. Natl Sci Rev 10, nwad108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong, Z., He, B., Wang, Y.P., Chen, H.W., Chen, D., Fu, Y.H., Chen, Y., Guo, L., Deng, Y., Huang, L., et al. (2023). Disentangling the effects of vapor pressure deficit on northern terrestrial vegetation productivity. Sci Adv 9, eadf3166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, S., Williams, A.P., Lintner, B.R., Berg, A.M., Zhang, Y., Keenan, T.F., Cook, B.I., Hagemann, S., Seneviratne, S.I., and Gentine, P. (2021). Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat Clim Chang 11, 38–44.

    Article  Google Scholar 

  • Zhou, S., Yu, B., Huang, Y., and Wang, G. (2014). The effect of vapor pressure deficit on water use efficiency at the subdaily time scale. Geophys Res Lett 41, 5005–5013.

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the Chinese National Science Foundational Project (32160292, 32171759, and 31930070), the National Key Research and Development Program of China (2017YFA0604403 and 2016YFA0600804), JIANGXI DOUBLE THOUSAND PLANS (jxsq2020101080), and the Natural Science Foundation of Jiangxi province (20224BAB205008). J.X. was supported by University of New Hampshire. We acknowledge the World Climate Research Programmers Working Group on Coupled Modelling, which is responsible for producing the CMIP5 and CMIP6 outputs, and we thank the climate modelling groups for producing and providing their model output. We also thank workgroups from the FLUXNET community, including the following networks: AmeriFlux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet-Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux-TERN, TCOS-Siberia, and USCCC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingfeng Huang or Fusheng Chen.

Ethics declarations

The author(s) declare that they have no other conflict of Interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Huang, J., Xiao, J. et al. Global convergence in terrestrial gross primary production response to atmospheric vapor pressure deficit. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2475-9

Navigation