Skip to main content
Log in

Global patterns and climatic drivers of above- and belowground net primary productivity in grasslands

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Understanding patterns and determinants of net primary productivity (NPP) in global grasslands is ongoing challenges, especially for belowground NPP (BNPP) and its fraction (fBNPP). By developing a comprehensive field-based dataset, we revealed that, along with gradients of mean annual precipitation, actual evapotranspiration, and aridity, aboveground NPP (ANPP), BNPP, and total NPP (TNPP) exhibited hump-shaped patterns, whereas fBNPP showed an opposite trend. ANPP and TNPP showed positive correlations with mean annual temperature, but fBNPP was negatively correlated with it. The relationship between BNPP and climatic factors was considerably weak, indicating that BNPP was relatively stable regardless of the climate conditions. We also observed that the sensitivities of ANPP and BNPP to interannual temperature variability and those of BNPP to interannual precipitation fluctuations exhibited large variations among different study sites, and differed from those at the spatial scale. In contrast, the temporal sensitivities of ANPP to interannual precipitation variability were highly similar across all the individual sites and much smaller than those at the spatial scale. Overall, these results highlight that precipitation, temperature and evapotranspiration all play vital roles in shaping ANPP pattern and its partitioning to belowground and that the patterns of BNPP along climatic gradients do not mirror those of the ANPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlström, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J.G., Friedlingstein, P., Jain, A.K., et al. (2015). The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899.

    PubMed  Google Scholar 

  • Bai, Y., Wu, J., Xing, Q., Pan, Q., Huang, J., Yang, D., and Han, X. (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89, 2140–2153.

    PubMed  Google Scholar 

  • Bai, W., Wan, S., Niu, S., Liu, W., Chen, Q., Wang, Q., Zhang, W., Han, X., and Li, L. (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Glob Change Biol 16, 1306–1316.

    Google Scholar 

  • Bardgett, R.D., Mommer, L., and De Vries, F.T. (2014). Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29, 692–699.

    PubMed  Google Scholar 

  • Byrne, K.M., Lauenroth, W.K., and Adler, P.B. (2013). Contrasting effects of precipitation manipulations on production in two sites within the central grassland region, USA. Ecosystems 16, 1039–1051.

    Google Scholar 

  • Chapin, F.S., III, Chapin, M.C., and Matson, P.A. (2011). Principles of Terrestrial Ecosystem Ecology (New York: Springer Science & Business Media), pp. 124–128.

    Google Scholar 

  • Davidson, E.A., and Janssens, I.A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173.

    CAS  PubMed  Google Scholar 

  • Del Grosso, S., Parton, W., Stohlgren, T., Zheng, D., Bachelet, D., Prince, S., Hibbard, K., and Olson, R. (2008). Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117–2126.

    PubMed  Google Scholar 

  • Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova Pinto, M., Casanova-Katny, A., Muñoz, C., Boudin, M., Zagal Venegas, E., et al. (2015). Soil carbon storage controlled by interactions between geochemistry and climate. Nat Geosci 8, 780–783.

    CAS  Google Scholar 

  • Esser, G. (2013). NPP Multi-Biome: Global Osnabruck Data, 1937–1981, R1. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/214.

  • Epstein, H.E., Lauenroth, W.K., Burke, I.C., and Coffin, D.P. (1997). Effects of temperature and soil texture on ANPP in the U.S. Great Plains. Ecology 78, 722–731.

    Google Scholar 

  • Fang, J., Liu, G., and Xu, S. (1996). Carbon storage in terrestrial ecosystem of China. In G. Wang and Y. Wen, eds. The Measurement of Greenhouse Gas and Their Release and Related Processes (Beijing: China Environmental Science Press), pp. 391–397.

    Google Scholar 

  • Fang, J., Piao, S., Zhou, L., He, J., Wei, F., Myneni, R.B., Tucker, C.J., and Tan, K. (2005). Precipitation patterns alter growth of temperate vegetation. Geophys Res Lett 32, L21411.

    Google Scholar 

  • Field, C.B., Behrenfeld, M.J., Rand erson, J.T., and Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281, 237–240.

    CAS  PubMed  Google Scholar 

  • Gaitan, J.J., Oliva, G.E., Bran, D.E., Maestre, F.T., Aguiar, M.R., Jobbagy, E.G., Buono, G.G., Ferrante, D., Nakamatsu, V.B., Ciari, G., et al. (2014). Vegetation structure is as important as climate for explaining ecosystem function across Patagonian rangelands. J Ecol 102, 1419–1428.

    Google Scholar 

  • Gale, M.R., and Grigal, D.F. (1987). Vertical root distributions ofnorthern tree species in relation to successional status. Can J For Res 17, 829–834.

    Google Scholar 

  • Gilgen, A.K., and Buchmann, N. (2009). Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation. Biogeosciences 6, 2525–2539.

    Google Scholar 

  • Gill, A.L., and Finzi, A.C. (2016). Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecol Lett 19, 1419–1428.

    PubMed  Google Scholar 

  • Gill, R.A., and Jackson, R.B. (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytol 147, 13–31.

    Google Scholar 

  • Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M., and Charnov, E.L. (2001). Effects of size and temperature on metabolic rate. Science 293, 2248–2251.

    CAS  PubMed  Google Scholar 

  • Hsu, J.S., Powell, J., and Adler, P.B. (2012). Sensitivity of mean annual primary production to precipitation. Glob Change Biol 18, 2246–2255.

    Google Scholar 

  • Hui, D., and Jackson, R.B. (2006). Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol 169, 85–93.

    CAS  PubMed  Google Scholar 

  • Huxman, T.E., Smith, M.D., Fay, P.A., Knapp, A.K., Shaw, M.R., Loik, M. E., Smith, S.D., Tissue, D.T., Zak, J.C., Weltzin, J.F., et al. (2004). Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654.

    CAS  PubMed  Google Scholar 

  • IPCC. (2014). Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri, R.K., and Meyer, L.A., eds. IPCC, Geneva, Switzerland. pp. 1–9.

    Google Scholar 

  • Jackson, R.B., Canadell, J., Ehleringer, J.R., Mooney, H.A., Sala, O.E., and Schulze, E.D. (1996). A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411.

    CAS  PubMed  Google Scholar 

  • Jackson, R.B., Lajtha, K., Crow, S.E., Hugelius, G., Kramer, M.G., and Piñeiro, G. (2017). The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu Rev Ecol Evol Syst 48, 419–445.

    Google Scholar 

  • Knapp, A.K., Ciais, P., and Smith, M.D. (2017). Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. New Phytol 214, 41–47.

    PubMed  Google Scholar 

  • Knapp, A.K., and Smith, M.D. (2001). Variation among biomes intemporal dynamics of aboveground primary production. Science 291, 481–484.

    CAS  PubMed  Google Scholar 

  • Lauenroth, W.K., and Sala, O.E. (1992). Long-term forage production of North American shortgrass steppe. Ecol Appl 2, 397–403.

    CAS  PubMed  Google Scholar 

  • Li, Y., Reich, P.B., Schmid, B., Shrestha, N., Feng, X., Lyu, T., Maitner, B. S., Xu, X., Li, Y., Zou, D., et al. (2020). Leaf size of woody dicots predicts ecosystem primary productivity. Ecol Lett 23, 1003–1013.

    PubMed  PubMed Central  Google Scholar 

  • Liu, L., and Greaver, T.L. (2010). A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol Lett 13, 819–828.

    PubMed  Google Scholar 

  • Liu, Y., Wang, C., He, N., Wen, X., Gao, Y., Li, S., Niu, S., Butterbach-Bahl, K., Luo, Y., and Yu, G. (2017). A global synthesis of the rate and temperature sensitivity of soil nitrogen mineralization: latitudinal patterns and mechanisms. Glob Change Biol 23, 455–464.

    Google Scholar 

  • Long, S.P., Garcia Moya, E., Imbamba, S.K., Kamnalrut, A., Piedade, M.T. F., Scurlock, J.M.O., Shen, Y.K., and Hall, D.O. (1989). Primary productivity of natural grass ecosystems of the tropics: a reappraisal. Plant Soil 115, 155–166.

    Google Scholar 

  • López-Mársico, L., Altesor, A., Oyarzabal, M., Baldassini, P., and Paruelo, J.M. (2015). Grazing increases below-ground biomass and net primary production in a temperate grassland. Plant Soil 392, 155–162.

    Google Scholar 

  • Luo, Y., Jiang, L., Niu, S., and Zhou, X. (2017). Nonlinear responses of land ecosystems to variation in precipitation. New Phytol 214, 5–7.

    PubMed  Google Scholar 

  • Luyssaert, S., Inglima, I., Jung, M., Richardson, A.D., Reichstein, M., Papale, D., Piao, S.L., Schulze, E.D., Wingate, L., Matteucci, G., et al. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13, 2509–2537.

    Google Scholar 

  • Ma, Z., Guo, D., Xu, X., Lu, M., Bardgett, R.D., Eissenstat, D.M., McCormack, M.L., and Hedin, L.O. (2018). Evolutionary history resolves global organization ofrootfunctional traits. Nature 555, 94–97.

    CAS  PubMed  Google Scholar 

  • Malhi, Y., Doughty, C., and Galbraith, D. (2011). The allocation of ecosystem net primary productivity in tropical forests. Phil Trans R Soc B 366, 3225–3245.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaletz, S.T., Cheng, D., Kerkhoff, A.J., and Enquist, B.J. (2014). Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43.

    CAS  PubMed  Google Scholar 

  • Morel, A.C., Adu Sasu, M., Adu-Bredu, S., Quaye, M., Moore, C., Ashley Asare, R., Mason, J., Hirons, M., McDermott, C.L., Robinson, E.J.Z., et al. (2019). Carbon dynamics, net primary productivity and human-appropriated net primary productivity across a forest-cocoa farm landscape in West Africa. Glob Change Biol 25, 2661–2677.

    Google Scholar 

  • Nakagawa, S., and Schielzeth, H.A. (2013). General and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4, 133–142.

    Google Scholar 

  • Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., Tucker, C.J., Myneni, R.B., and Running, S.W. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563.

    CAS  PubMed  Google Scholar 

  • Noy-Meir, I. (1973). Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4, 25–51.

    Google Scholar 

  • Olson, R.J., Scurlock, J.M.O., and Prince, S.D. (2013). NPP Multi-Biome: NPP and Driver Data for Ecosystem Model-Data Intercomparison, R2. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/615.

    Google Scholar 

  • Peng, Y., Guo, D., and Yang, Y. (2017). Global patterns of root dynamics under nitrogen enrichment. Glob Ecol Biogeogr 26, 102–114.

    Google Scholar 

  • Piao, S., Fang, J., Zhou, L., Zhu, B., Tan, K., and Tao, S. (2005). Changes in vegetation net primary productivity from 1982 to 1999 in China. Glob Biogeochem Cycle 19, GB2027.

    Google Scholar 

  • Campos, G.E.P, Moran, M.S., Huete, A., Zhang, Y., Bresloff, C., Huxman, T.E., Eamus, D., Bosch, D.D., Buda, A.R., Gunter, S.A., et al. (2013). Ecosystem resilience despite large-scale altered hydroclimatic conditions. Nature 494, 349–352.

    Google Scholar 

  • Poulter, B., Frank, D., Ciais, P., Myneni, R.B., Andela, N., Bi, J., Broquet, G., Canadell, J.G., Chevallier, F., Liu, Y.Y., et al. (2014). Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603.

    CAS  PubMed  Google Scholar 

  • R Development Core Team. (2017). R: A Languange and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Sajedi, T., Prescott, C.E., Seely, B., and Lavkulich, L.M. (2012). Relationships among soil moisture, aeration and plant communities in natural and harvested coniferous forests in coastal British Columbia, Canada. J Ecol 100, 605–618.

    Google Scholar 

  • Sala, O.E., Gherardi, L.A., Reichmann, L., Jobbágy, E., and Peters, D. (2012). Legacies of precipitation fluctuations on primary production: theory and data synthesis. Phil Trans R Soc B 367, 3135–3144.

    PubMed  PubMed Central  Google Scholar 

  • Scandellari, F., Ventura, M., Gioacchini, P., Vittori Antisari, L., and Tagliavini, M. (2010). Seasonal pattern of net nitrogen rhizodeposition from peach (Prunus persica (L.) Batsch) trees in soils with different textures. Agr Ecosyst Environ 136, 162–168.

    CAS  Google Scholar 

  • Schuur, E.A.G. (2001). The effect of water on decomposition dynamics in mesic to wet Hawaiian montane forests. Ecosystems 4, 259–273.

    CAS  Google Scholar 

  • Schuur, E.A.G. (2003). Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84, 1165–1170.

    Google Scholar 

  • Scurlock, J.M.O., Johnson, K., and Olson, R.J. (2002). Estimating net primary productivity from grassland biomass dynamics measurements. Glob Change Biol 8, 736–753.

    Google Scholar 

  • Scurlock, J.M.O., Johnson, K.R., and Olson, R.J. (2015). NPP Grassland: NPP Estimates from Biomass Dynamics for 31 Sites, 1948–1994, R1. Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA.

    Google Scholar 

  • Slessarev, E.W., Lin, Y., Bingham, N.L., Johnson, J.E., Dai, Y., Schimel, J. P., and Chadwick, O.A. (2016). Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569.

    CAS  PubMed  Google Scholar 

  • Stegen, J.C., Ferriere, R., and Enquist, B.J. (2012). Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients. Proc R Soc B 279, 1051–1060.

    PubMed  Google Scholar 

  • Sultan, S.E. (2010). Plant developmental responses to the environment: eco-devo insights. Curr Opin Plant Biol 13, 96–101.

    CAS  PubMed  Google Scholar 

  • Tian, D., Yan, Z., Niklas, K.J., Han, W., Kattge, J., Reich, P.B., Luo, Y., Chen, Y., Tang, Z., Hu, H., et al. (2018). Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. Natl Sci Rev 5, 728–739.

    CAS  Google Scholar 

  • Valentine, H.T., and Mäkelä, A. (2012). Modeling forest stand dynamics from optimal balances of carbon and nitrogen. New Phytol 194, 961–971.

    CAS  PubMed  Google Scholar 

  • Vogt, K.A., Vogt, D.J., and Bloomfield, J. (1998). Analysis of some direct and indirect methods for estimating root biomass and production of forest at an ecosystem level. Plant Soil 200, 71–89.

    CAS  Google Scholar 

  • Wang, N., Quesada, B., Xia, L., Butterbach-Bahl, K., Goodale, C.L., and Kiese, R. (2019a). Effects of climate warming on carbon fluxes in grasslands—A global meta-analysis. Glob Change Biol 25, 1839–1851.

    Google Scholar 

  • Wang, J., Sun, J., Yu, Z., Li, Y., Tian, D., Wang, B., Li, Z., and Niu, S. (2019b). Vegetation type controls root turnover in global grasslands. Glob Ecol Biogeogr 28, 442–455.

    CAS  Google Scholar 

  • White, R., Murray, S., and Rohweder, M. (2000). Pilot analysis of global ecosystems: grassland ecosystems technical report. World Resources Institute, Washington DC, USA.

    Google Scholar 

  • Wilcox, K.R., Blair, J.M., Smith, M.D., and Knapp, A.K. (2016). Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions? Ecology 97, 561–568.

    PubMed  Google Scholar 

  • Wilcox, K.R., Shi, Z., Gherardi, L.A., Lemoine, N.P., Koerner, S.E., Hoover, D.L., Bork, E., Byrne, K.M., Cahill Jr. J., Collins, S.L., et al. (2017). Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments. Glob Change Biol 23, 4376–4385.

    Google Scholar 

  • Wright, I.J., Dong, N., Maire, V., Prentice, I.C., Westoby, M., Díaz, S., Gallagher, R.V., Jacobs, B.F., Kooyman, R., Law, E.A., et al. (2017). Global climatic drivers of leaf size. Science 357, 917–921.

    CAS  PubMed  Google Scholar 

  • Wu, Z., Dijkstra, P., Koch, G.W., Peñuelas, J., and Hungate, B.A. (2011). Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob Change Biol 17, 927–942.

    Google Scholar 

  • Xia, J., Niu, S., Ciais, P., Janssens, I.A., Chen, J., Ammann, C., Arain, A., Blanken, P.D., Cescatti, A., Bonal, D., et al. (2015). Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc Natl Acad Sci USA 112, 2788–2793.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, B., Yang, Y., Li, P., Shen, H., and Fang, J. (2014). Global patterns of ecosystem carbon flux in forests: A biometric data-based synthesis. Glob Biogeochem Cycle 28, 962–973.

    CAS  Google Scholar 

  • Xu, X., Sherry, R.A., Niu, S., Li, D., and Luo, Y. (2013). Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Glob Change Biol 19, 2753–2764.

    Google Scholar 

  • Yang, Y., Fang, J., Ji, C., and Han, W. (2009). Above- and belowground biomass allocation in Tibetan grasslands. J Vegetat Sci 20, 177–184.

    Google Scholar 

  • Yang, Y., Fang, J., Ma, W., Guo, D., and Mohammat, A. (2010). Large-scale pattern of biomass partitioning across China’s grasslands. Glob Ecol Biogeogr 19, 268–277.

    Google Scholar 

  • Yang, Y., Fang, J., Ma, W., and Wang, W. (2008). Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophys Res Lett 35, L23710.

    Google Scholar 

  • Zhang, C., Kellomäki, S., Zhong, Q., Wang, K., Gong, J., Qiao, Y., Zhou, X., and Gao, W. (2014). Seasonal biomass allocation in a boreal perennial grass (Phalaris arundinacea L.) under elevated temperature and CO2 with varying water regimes. Plant Growth Regul 74, 153–164.

    Google Scholar 

  • Zhang, S., Zhang, Y., and Ma, K. (2016). Latitudinal variation in herbivory: hemispheric asymmetries and the role of climatic drivers. J Ecol 104, 1089–1095.

    Google Scholar 

  • Zhao, L., Li, Y., Xu, S., Zhou, H., Gu, S., Yu, G., and Zhao, X. (2006). Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Glob Change Biol 12, 1940–1953.

    Google Scholar 

  • Zhou, X., Ge, Z.M., Kellomäki, S., Wang, K.Y., Peltola, H., and Martikainen, P. (2011). Effects of elevated CO2 and temperature on leaf characteristics, photosynthesis and carbon storage in aboveground biomass of a boreal bioenergy crop (Phalaris arundinacea L.) under varying water regimes. GCB Bioenergy 3, 223–234.

    CAS  Google Scholar 

  • Zhou, X., Talley, M., and Luo, Y. (2009). Biomass, litter, and soil respiration along a precipitation gradient in southern Great Plains, USA. Ecosystems 12, 1369–1380.

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere appreciation to all the principal investigators, technicians, etc. who contribute to the global dataset used in this synthesis. We thank team members from Peking University, including Yuhao Feng, Yupin Wang, Haojie Su, Suhui Ma, Chenzhi Wang, and Guoping Chen for assistance in paper writing. This work was supported by the National Natural Science Foundation of China (31988102) and the National Key Research and Development Program of China (2017YFC0503906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyun Fang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Yang, Y., Zhao, X. et al. Global patterns and climatic drivers of above- and belowground net primary productivity in grasslands. Sci. China Life Sci. 64, 739–751 (2021). https://doi.org/10.1007/s11427-020-1837-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1837-9

Keywords

Navigation