Skip to main content
Log in

KLF4 facilitates chromatin accessibility remodeling in porcine early embryos

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Chromatin accessibility remodeling driven by pioneer factors is critical for the development of early embryos. Current studies have illustrated several pioneer factors as being important for agricultural animals, but what are the pioneer factors and how the pioneer factors remodel the chromatin accessibility in porcine early embryos is not clear. By employing low-input DNase-seq (liDNase-seq), we profiled the landscapes of chromatin accessibility in porcine early embryos and uncovered a unique chromatin accessibility reprogramming pattern during porcine preimplantation development. Our data revealed that KLF4 played critical roles in remodeling chromatin accessibility in porcine early embryos. Knocking down of KLF4 led to the reduction of chromatin accessibility in early embryos, whereas KLF4 overexpression promoted the chromatin openness in porcine blastocysts. Furthermore, KLF4 deficiency resulted in mitochondrial dysfunction and developmental failure of porcine embryos. In addition, we found that overexpression of KLF4 in blastocysts promoted lipid droplet accumulation, whereas knockdown of KLF4 disrupted this process. Taken together, our study revealed the chromatin accessibility dynamics and identified KLF4 as a key regulator in chromatin accessibility and cellular metabolism during porcine preimplantation embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

DNase-seq and RNA-seq datasets generated in this study were deposited in the Genome Sequence Archive (GSA) under accession CRA006639.

References

  • Ai, Z., Xiang, X., Xiang, Y., Szczerbinska, I., Qian, Y., Xu, X., Ma, C., Su, Y., Gao, B., Shen, H., et al. (2022). Krüppel-like factor 5 rewires NANOG regulatory network to activate human naive pluripotency specific LTR7Ys and promote naive pluripotency. Cell Rep 40, 111240.

    Article  CAS  PubMed  Google Scholar 

  • Aizawa, R., Ibayashi, M., Tatsumi, T., Yamamoto, A., Kokubo, T., Miyasaka, N., Sato, K., Ikeda, S., Minami, N., and Tsukamoto, S. (2019). Synthesis and maintenance of lipid droplets are essential for mouse preimplantation embryonic development. Development 146.

  • Aksoy, I., Giudice, V., Delahaye, E., Wianny, F., Aubry, M., Mure, M., Chen, J., Jauch, R., Bogu, G.K., Nolden, T., et al. (2014). Klf4 and Klf5 differentially inhibit mesoderm and endoderm differentiation in embryonic stem cells. Nat Commun 5, 3719.

    Article  PubMed  Google Scholar 

  • Arena, R., Bisogno, S., Gąsior, Ł., Rudnicka, J., Bernhardt, L., Haaf, T., Zacchini, F., Bochenek, M., Fic, K., Bik, E., et al. (2021). Lipid droplets in mammalian eggs are utilized during embryonic diapause. Proc Natl Acad Sci USA 118, e2018362118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahat, A., and Gross, A. (2019). Mitochondrial plasticity in cell fate regulation. J Biol Chem 294, 13852–13863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., and Noble, W.S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37, W202–W208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birsoy, K., Chen, Z., and Friedman, J. (2008). Transcriptional regulation of adipogenesis by KLF4. Cell Metab 7, 339–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bou, G., Guo, J., Liu, S., Guo, S., Davaakhuu, G., Lv, Q., Xue, B., Qiao, S., Lv, J., Weng, X., et al. (2022). OCT4 expression transactivated by GATA protein is essential for non-rodent trophectoderm early development. Cell Rep 41, 111644.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, J., Pope, I., Masia, F., Sanusi, R., Langbein, W., Swann, K., and Borri, P. (2016). Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy. Development 143, 2238–2247.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bu, G., Zhu, W., Liu, X., Zhang, J., Yu, L., Zhou, K., Wang, S., Li, Z., Fan, Z., Wang, T., et al. (2022). Coordination of zygotic genome activation entry and exit by H3K4me3 and H3K27me3 in porcine early embryos. Genome Res 32, 1487–1501.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao, J., Li, M., Liu, K., Shi, X., Sui, N., Yao, Y., Wang, X., Li, S., Tian, Y., Tan, S., et al. (2023). Oxidative phosphorylation safeguards pluripotency via UDP-N-acetylglucosamine. Protein Cell 14, 376–381.

    PubMed  Google Scholar 

  • Carta, G., Murru, E., Banni, S., and Manca, C. (2017). Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol 8.

  • Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chi, F., Sharpley, M.S., Nagaraj, R., Roy, S.S., and Banerjee, U. (2020). Glycolysis-independent glucose metabolism distinguishes TE from ICM fate during mammalian embryogenesis. Dev Cell 53, 9–26.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, Y.M., Kwon, S., Pak, Y.K., Seol, H.W., Choi, Y.M., Park, D.J., Park, K.S., and Lee, H.K. (2006). Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348, 1472–1478.

    Article  CAS  PubMed  Google Scholar 

  • Chronis, C., Fiziev, P., Papp, B., Butz, S., Bonora, G., Sabri, S., Ernst, J., and Plath, K. (2017). Cooperative binding of transcription factors orchestrates reprogramming. Cell 168, 442–459.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Giammartino, D.C., Kloetgen, A., Polyzos, A., Liu, Y., Kim, D., Murphy, D., Abuhashem, A., Cavaliere, P., Aronson, B., Shah, V., et al. (2019). KLF4 is involved in the organization and regulation of pluripotency-associated three-dimensional enhancer networks. Nat Cell Biol 21, 1179–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan, Y., Zheng, C., Zheng, J., Ma, L., Ma, X., Zhong, Y., Zhao, X., Li, F., Guo, Q., and Yin, Y. (2023). Profiles of muscular amino acids, fatty acids, and metabolites in Shaziling pigs of different ages and relation to meat quality. Sci China Life Sci 66, 1323–1339.

    Article  CAS  PubMed  Google Scholar 

  • Ebert, K.M., Liem, H., and Hecht, N.B. (1988). Mitochondrial DNA in the mouse preimplantation embryo. Reproduction 82, 145–149.

    Article  CAS  Google Scholar 

  • El Shourbagy, S.H., Spikings, E.C., Freitas, M., and St John, J.C. (2006). Mitochondria directly influence fertilisation outcome in the pig. Reproduction 131, 233–245.

    Article  CAS  PubMed  Google Scholar 

  • Ema, M., Mori, D., Niwa, H., Hasegawa, Y., Yamanaka, Y., Hitoshi, S., Mimura, J., Kawabe, Y., Hosoya, T., Morita, M., et al. (2008). Krüppel-like factor 5 is essential for blastocyst development and the normal self-renewal of mouse ESCs. Cell Stem Cell 3, 555–567.

    Article  CAS  PubMed  Google Scholar 

  • Eslamieh, M., Williford, A., and Betrán, E. (2017). Few nuclear-encoded mitochondrial gene duplicates contribute to male germline-specific functions in humans. Genome Biol Evol 9, 2782–2790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira, C.R., Saraiva, S.A., Catharino, R.R., Garcia, J.S., Gozzo, F.C., Sanvido, G.B., Santos, L.F.A., Lo Turco, E.G., Pontes, J.H.F., Basso, A. C., et al. (2010). Single embryo and oocyte lipid fingerprinting by mass spectrometry. J Lipid Res 51, 1218–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folmes, C.D.L., Nelson, T.J., Martinez-Fernandez, A., Arrell, D.K., Lindor, J.Z., Dzeja, P.P., Ikeda, Y., Perez-Terzic, C., and Terzic, A. (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14, 264–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fornes, O., Castro-Mondragon, J.A., Khan, A., van der Lee, R., Zhang, X., Richmond, P.A., Modi, B.P., Correard, S., Gheorghe, M., Baranašić, D., et al. (2020). JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48, D87–D92.

    CAS  PubMed  Google Scholar 

  • Furuta, A., and Nakamura, T. (2021). Lipid droplets are formed in 2-cell-like cells. J Reprod Dev 67, 79–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, L., Wu, K., Liu, Z., Yao, X., Yuan, S., Tao, W., Yi, L., Yu, G., Hou, Z., Fan, D., et al. (2018). Chromatin accessibility landscape in human early embryos and its association with evolution. Cell 173, 248–259.e15.

    Article  CAS  PubMed  Google Scholar 

  • Haggarty, P., Wood, M., Ferguson, E., Hoad, G., Srikantharajah, A., Milne, E., Hamilton, M., and Bhattacharya, S. (2005). Fatty acid metabolism in human preimplantation embryos. Hum Reprod 21, 766–773.

    Article  PubMed  Google Scholar 

  • Hannun, Y.A., and Obeid, L.M. (2018). Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 19, 175–191.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, Y., Saito, S., Bai, H., Takahashi, M., and Kawahara, M. (2021). Mitochondrial maturation in the trophectoderm and inner cell mass regions of bovine blastocysts. Theriogenology 175, 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Inoue, A., Jiang, L., Lu, F., Suzuki, T., and Zhang, Y. (2017). Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins, T.G., and Carrell, D.T. (2012). Dynamic alterations in the paternal epigenetic landscape following fertilization. Front Gene 3.

  • Jiang, J., Chan, Y.S., Loh, Y.H., Cai, J., Tong, G.Q., Lim, C.A., Robson, P., Zhong, S., and Ng, H.H. (2008). A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10, 353–360.

    Article  PubMed  Google Scholar 

  • Kinisu, M., Choi, Y.J., Cattoglio, C., Liu, K., Roux de Bezieux, H., Valbuena, R., Pum, N., Dudoit, S., Huang, H., Xuan, Z., et al. (2021). Klf5 establishes bi-potential cell fate by dual regulation of ICM and TE specification genes. Cell Rep 37, 109982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, Q., Yang, X., Zhang, H., Liu, S., Zhao, J., Zhang, J., Weng, X., Jin, J., and Liu, Z. (2020). Lineage specification and pluripotency revealed by transcriptome analysis from oocyte to blastocyst in pig. FASEB J 34, 691–705.

    Article  CAS  PubMed  Google Scholar 

  • Ladstätter, S., and Tachibana, K. (2018). Genomic insights into chromatin reprogramming to totipotency in embryos. J Cell Biol 218, 70–82.

    Article  PubMed  Google Scholar 

  • Lai, L., and Prather, R.S. (2003). Production of cloned pigs by using somatic cells as donors. Cloning Stem Cells 5, 233–241.

    Article  CAS  PubMed  Google Scholar 

  • Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, D., Liu, J., Yang, X., Zhou, C., Guo, J., Wu, C., Qin, Y., Guo, L., He, J., Yu, S., et al. (2017). Chromatin accessibility dynamics during iPSC reprogramming. Cell Stem Cell 21, 819–833.e6.

    Article  CAS  PubMed  Google Scholar 

  • Liang, H.L., Nien, C.Y., Liu, H.Y., Metzstein, M.M., Kirov, N., and Rushlow, C. (2008). The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature 456, 400–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, X., Zhang, R., Lu, Y., Prosdocimo, D.A., Sangwung, P., Zhang, L., Zhou, G., Anand, P., Lai, L., Leone, T.C., et al. (2015). Kruppel-like factor 4 is critical for transcriptional control of cardiac mitochondrial homeostasis. J Clin Invest 125, 3461–3476.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao, Y., Smyth, G.K., and Shi, W. (2013). The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res 41, e108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T., Li, J., Yu, L., Sun, H.X., Li, J., Dong, G., Hu, Y., Li, Y., Shen, Y., Wu, J., et al. (2021). Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental differences among pigs, monkeys, and humans. Cell Discov 7, 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Hao, Y., Li, Z., Zhou, J., Zhu, H., Bu, G., Liu, Z., Hou, X., Zhang, X., and Miao, Y.L. (2020). Maternal cytokines CXCL12, VEGFA, and WNT5A promote porcine oocyte maturation via MAPK activation and canonical WNT inhibition. Front Cell Dev Biol 8, 578.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Wang, C., Liu, W., Li, J., Li, C., Kou, X., Chen, J., Zhao, Y., Gao, H., Wang, H., et al. (2016). Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 537, 558–562.

    Article  CAS  PubMed  Google Scholar 

  • Lu, F., Liu, Y., Inoue, A., Suzuki, T., Zhao, K., and Zhang, Y. (2016). Establishing chromatin regulatory landscape during mouse preimplantation development. Cell 165, 1375–1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lunney, J.K., Van Goor, A., Walker, K.E., Hailstock, T., Franklin, J., and Dai, C. (2021). Importance ofthe pig as a human biomedical model. Sci Transl Med 13, eabd5758.

    Article  CAS  PubMed  Google Scholar 

  • McEvoy, T.G., Coull, G.D., Broadbent, P.J., Hutchinson, J.S., and Speake, B.K. (2000). Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. Reproduction 118, 163–170.

    Article  CAS  Google Scholar 

  • Miao, L., Tang, Y., Bonneau, A.R., Chan, S.H., Kojima, M.L., Pownall, M. E., Vejnar, C.E., Gao, F., Krishnaswamy, S., Hendry, C.E., et al. (2022). The landscape of pioneer factor activity reveals the mechanisms of chromatin reprogramming and genome activation. Mol Cell 82, 986–1002.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. (2008). Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26, 101–106.

    Article  CAS  PubMed  Google Scholar 

  • Pikó, L., and Taylor, K.D. (1987). Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol 123, 364–374.

    Article  PubMed  Google Scholar 

  • Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Ibeas, P., Sang, F., Zhu, Q., Tang, W.W.C., Withey, S., Klisch, D., Wood, L., Loose, M., Surani, M.A., and Alberio, R. (2019). Pluripotency and X chromosome dynamics revealed in pig pre-gastrulating embryos by single cell analysis. Nat Commun 10, 500.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynier, P., May-Panloup, P., Chretien, M.F., Morgan, C.J., Jean, M., Savagner, F., Barriere, P., and Malthiery, Y. (2001). Mitochondrial DNA content affects the fertilizability of human oocytes. Mol Hum Reprod 7, 425–429.

    Article  CAS  PubMed  Google Scholar 

  • Romek, M., Gajda, B., Rolka, M., and Smorg, Z. (2011). Mitochondrial activity and morphology in developing porcine oocytes and pre-implantation non-cultured and cultured embryos. Reprod Domest Anim 46, 471–480.

    Article  CAS  PubMed  Google Scholar 

  • Sathananthan, A.H., and Trounson, A.O. (2000). Mitochondrial morphology during preimplantational human embryogenesis. Hum Reprod 15, 148–159.

    Article  PubMed  Google Scholar 

  • Segre, J.A., Bauer, C., and Fuchs, E. (1999). Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 22, 356–360.

    Article  CAS  PubMed  Google Scholar 

  • Song, R., Wang, Y., Zheng, Q., Yao, J., Cao, C., Wang, Y., and Zhao, J. (2022) One-step base editing in multiple genes by direct embryo injection for pig trait improvement. Sci China Life Sci 65, 739–752.

    Article  CAS  PubMed  Google Scholar 

  • Spikings, E.C., Alderson, J., and John, J.C.S. (2007). Regulated mitochondrial DNA replication during oocyte maturation is essential for successful porcine embryonic development. Biol Reprod 76, 327–335.

    Article  CAS  PubMed  Google Scholar 

  • Stern, S., Biggers, J.D., and Anderson, E. (1971). Mitochondria and early development of the mouse. J Exp Zool 176, 179–191.

    Article  CAS  PubMed  Google Scholar 

  • Sturmey, R.G., and Leese, H.J. (2003). Energy metabolism in pig oocytes and early embryos. Reproduction 126, 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Thundathil, J., Filion, F., and Smith, L.C. (2005). Molecular control of mitochondrial function in preimplantation mouse embryos. Mol Reprod Dev 71, 405–413.

    Article  CAS  PubMed  Google Scholar 

  • Walther, T.C., Chung, J., and Farese Jr., R.V. (2017). Lipid droplet biogenesis. Annu Rev Cell Dev Biol 33, 491–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S.H., Hao, J., Zhang, C., Duan, F.F., Chiu, Y.T., Shi, M., Huang, X., Yang, J., Cao, H., and Wang, Y. (2022). KLF17 promotes human naive pluripotency through repressing MAPK3 and ZIC2. Sci China Life Sci 65, 1985–1997.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Shi, X., Wei, S., Ma, D., Oyinlade, O., Lv, S.Q., Ying, M., Zhang, Y.A., Claypool, S.M., Watkins, P., et al. (2018). Krüppel-like factor 4 (KLF4) induces mitochondrial fusion and increases spare respiratory capacity of human glioblastoma cells. J Biol Chem 293, 6544–6555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, W., Xu, J., Yu, G., Yao, G., Xu, K., Ma, X., Zhang, N., Liu, B., Li, T., Lin, Z., et al. (2019). Resetting histone modifications during human parental-to-zygotic transition. Science 365, 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Xu, K., Zhang, X., Liu, Z., Ruan, J., Xu, C., Che, J., Fan, Z., Mu, Y., and Li, K. (2022). A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection. Sci China Life Sci 65, 1535–1546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue, Z., Huang, K., Cai, C., Cai, L., Jiang, C.Y., Feng, Y., Liu, Z., Zeng, Q., Cheng, L., Sun, Y.E., et al. (2013). Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., et al. (2013). Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20, 1131–1139.

    Article  CAS  PubMed  Google Scholar 

  • Yan, S., Tu, Z., Liu, Z., Fan, N., Yang, H., Yang, S., Yang, W., Zhao, Y., Ouyang, Z., Lai, C., et al. (2018). A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell 173, 989–1002.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue, Y., Xu, W., Kan, Y., Zhao, H.Y., Zhou, Y., Song, X., Wu, J., Xiong, J., Goswami, D., Yang, M., et al. (2021). Extensive germline genome engineering in pigs. Nat Biomed Eng 5, 134–143.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Zhao, J., Dalian, P., Lu, V., Zhang, C., Li, H., and Teitell, M.A. (2018). Metabolism in pluripotent stem cells and early mammalian development. Cell Metab 27, 332–338.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B. E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based Analysis of ChIP-Seq (MACS). Genome Biol 9, 137–143.

    Article  Google Scholar 

  • Zhao, J., Yao, K., Yu, H., Zhang, L., Xu, Y., Chen, L., Sun, Z., Zhu, Y., Zhang, C., Qian, Y., et al. (2021). Metabolic remodelling during early mouse embryo development. Nat Metab 3, 1372–1384.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, H., Huang, B., Zhang, B., Xiang, Y., Du, Z., Xu, Q., Li, Y., Wang, Q., Ma, J., Peng, X., et al. (2016). Resetting epigenetic memory by reprogramming of histone modifications in mammals. Mol Cell 63, 1066–1079.

    Article  CAS  PubMed  Google Scholar 

  • Zhi, Y., Jia, G., Gerelchimeg, B., Shi-chao, L., Yan-shuang, M., and Zhong-hua, L. (2014). Lentivirus mediated gene manipulation in trophectoderm of porcine embryos. J Northeast Agric Univ (Engl Ed) 21, 39–45.

    Google Scholar 

  • Zhu, Y., Zhou, Z., Huang, T., Zhang, Z., Li, W., Ling, Z., Jiang, T., Yang, J., Yang, S., Xiao, Y., et al. (2022). Mapping and analysis of a spatiotemporal H3K27ac and gene expression spectrum in pigs. Sci China Life Sci 65, 1517–1534.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31902161), the National Key Research and Development Program of China (2022YFD1302201, 2018YFA0107001), Strategic Priority Research Program of Chinese Academy of Sciences (XDA24020203), Key Research and Development Program of Hubei Province (2021BBA221), Major Project of Hubei Hongshan Laboratory (2021hszd003) and Foundation of Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University (QJHKY[2022]373). The authors thank Prof. Heide Schatten (University of Missouri-Columbia) for providing guidance and improving the language. The computations in this paper were run on the bioinformatics computing platform ofthe National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Falong Lu, Xin Liu or Yi-Liang Miao.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Bu, G., Hu, R. et al. KLF4 facilitates chromatin accessibility remodeling in porcine early embryos. Sci. China Life Sci. 67, 96–112 (2024). https://doi.org/10.1007/s11427-022-2349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2349-9

Navigation