Skip to main content
Log in

Nanomedicine targeting ferroptosis to overcome anticancer therapeutic resistance

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

A potential reason for the failure of tumor therapies is treatment resistance. Resistance to chemotherapy, radiotherapy, and immunotherapy continues to be a major obstacle in clinic, resulting in tumor recurrence and metastasis. The major mechanisms of therapy resistance are inhibitions of cell deaths, like apoptosis and necrosis, through drug inactivation and excretion, repair of DNA damage, tumor heterogeneity, or changes in tumor microenvironment, etc. Recent studies have shown that ferroptosis play a major role in therapies resistance by inducing phospholipid peroxidation and iron-dependent cell death. Some ferroptosis inducers in combination with clinical treatment techniques have been used to enhance the effect in tumor therapy. Notably, versatile ferroptosis nanoinducers exhibit an extensive range of functions in reversing therapy resistance, including directly triggering ferroptosis and feedback regulation. Herein, we provide a detailed description of the design, mechanism, and therapeutic application of ferroptosis-mediated synergistic tumor therapeutics. We also discuss the prospect and challenge of nanomedicine in tumor therapy resistance by regulating ferroptosis and combination therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, S.W., Sviderskiy, V.O., Terzi, E.M., Papagiannakopoulos, T., Moreira, A.L., Adams, S., Sabatini, D.M., Birsoy, K., and Possemato, R. (2017). NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551, 639–643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, C.W., Amante, J.J., Chhoy, P., Elaimy, A.L., Liu, H., Zhu, L.J., Baer, C.E., Dixon, S.J., and Mercurio, A.M. (2019). Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell 51, 575–586.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, F., Sang, Y., Liu, C., Bai, F., Zheng, L., Ren, J., and Qu, X. (2022a). Self-adaptive single-atom catalyst boosting selective ferroptosis in tumor cells. ACS Nano 16, 855–868.

    Article  CAS  PubMed  Google Scholar 

  • Cao, K., Du, Y., Bao, X., Han, M., Su, R., Pang, J., Liu, S., Shi, Z., Yan, F., and Feng, S. (2022b). Glutathione-bioimprinted nanoparticles targeting of N6-methyladenosine FTO demethylase as a strategy against leukemic stem cells. Small 18, 2106558.

    Article  CAS  Google Scholar 

  • Caramel, J., Ligier, M., and Puisieux, A. (2018). Pleiotropic roles for ZEB1 in cancer. Cancer Res 78, 30–35.

    Article  CAS  PubMed  Google Scholar 

  • Carbone, M., and Melino, G. (2019). Lipid metabolism offers anticancer treatment by regulating ferroptosis. Cell Death Differ 26, 2516–2519.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Wang, Z., Jia, S., Zhang, Y., Ji, S., Zhao, Z., Kwok, R.T.K., Lam, J.W.Y., Ding, D., Shi, Y., et al. (2022a). Evoking highly immunogenic ferroptosis aided by intramolecular motion-induced photo-hyperthermia for cancer therapy. Adv Sci 9, 2104885.

    Article  CAS  Google Scholar 

  • Chen, T.C., Chuang, J.Y., Ko, C.Y., Kao, T.J., Yang, P.Y., Yu, C.H., Liu, M.S., Hu, S.L., Tsai, Y.T., Chan, H., et al. (2020). AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biol 30, 101413.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Comish, P.B., Tang, D., and Kang, R. (2021). Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol 9, 637162.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., Wang, N., Yao, Y., and Yu, D. (2022b). Context-dependent regulation of follicular helper T cell survival. Trends Immunol 43, 309–321.

    Article  CAS  PubMed  Google Scholar 

  • Conlon, M., Poltorack, C.D., Forcina, G.C., Armenta, D.A., Mallais, M., Perez, M.A., Wells, A., Kahanu, A., Magtanong, L., Watts, J.L., et al. (2021). A compendium of kinetic modulatory profiles identifies ferroptosis regulators. Nat Chem Biol 17, 665–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad, M., and Pratt, D.A. (2019). The chemical basis of ferroptosis. Nat Chem Biol 15, 1137–1147.

    Article  CAS  PubMed  Google Scholar 

  • Dai, E., Han, L., Liu, J., Xie, Y., Kroemer, G., Klionsky, D.J., Zeh, H.J., Kang, R., Wang, J., and Tang, D. (2020). Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy 16, 2069–2083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cantley, A.M., Yang, W.S., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., Irmler, M., Beckers, J., Aichler, M., Walch, A., et al. (2017). ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13, 91–98.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Z., Feng, L., Chao, Y., Hao, Y., Chen, M., Gong, F., Han, X., Zhang, R., Cheng, L., and Liu, Z. (2019). Amplification of tumor oxidative stresses with liposomal fenton catalyst and glutathione inhibitor for enhanced cancer chemotherapy and radiotherapy. Nano Lett 19, 805–815.

    Article  CAS  PubMed  Google Scholar 

  • Du, J., Wang, X., Li, Y., Ren, X., Zhou, Y., Hu, W., Zhou, C., Jing, Q., Yang, C., Wang, L., et al. (2021). DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis 12, 705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, Y., Zhang, R., Yang, J., Liu, S., Zhou, J., Zhao, R., He, F., Zhang, Y., Yang, P., and Lin, J. (2022). A “closed-loop” therapeutic strategy based on mutually reinforced ferroptosis and immunotherapy. Adv Funct Mater 32, 2111784.

    Article  CAS  Google Scholar 

  • DuRoss, A.N., Neufeld, M.J., Rana, S., Thomas, C.R., and Sun, C. (2019). Integrating nanomedicine into clinical radiotherapy regimens. Adv Drug Deliv Rev 144, 35–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Efimova, I., Catanzaro, E., Van der Meeren, L., Turubanova, V.D., Hammad, H., Mishchenko, T.A., Vedunova, M.V., Fimognari, C., Bachert, C., Coppieters, F., et al. (2020). Vaccination with early ferroptotic cancer cells induces efficient antitumor immunity. J Immunother Cancer 8, e001369.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan, C., Zhang, S., Gong, Z., Li, X., Xiang, B., Deng, H., Zhou, M., Li, G., Li, Y., Xiong, W., et al. (2021a). Emerging role of metabolic reprogramming in tumor immune evasion and immunotherapy. Sci China Life Sci 64, 534–547.

    Article  PubMed  Google Scholar 

  • Fan, F., Liu, P., Bao, R., Chen, J., Zhou, M., Mo, Z., Ma, Y., Liu, H., Zhou, Y., Cai, X., et al. (2021b). A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy. Cancer Res 81, 6233–6245.

    Article  CAS  PubMed  Google Scholar 

  • Feng, H., Schorpp, K., Jin, J., Yozwiak, C.E., Hoffstrom, B.G., Decker, A.M., Rajbhandari, P., Stokes, M.E., Bender, H.G., Csuka, J.M., et al. (2020). Transferrin receptor is a specific ferroptosis marker. Cell Rep 30, 3411–3423.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, J., Lu, P., Zhu, G., Hooi, S.C., Wu, Y., Huang, X., Dai, H., Chen, P., Li, Z., Su, W., et al. (2021). ACSL4 is a predictive biomarker of sorafenib sensitivity in hepatocellular carcinoma. Acta Pharmacol Sin 42, 160–170.

    Article  CAS  PubMed  Google Scholar 

  • Friedmann Angeli, J.P., Xavier da Silva, T.N., and Schilling, B. (2022). CD8+ T cells PUF(A)ing the flames of cancer ferroptotic cell death. Cancer Cell 40, 346–348.

    Article  CAS  PubMed  Google Scholar 

  • Fu, J., Li, T., Yang, Y., Jiang, L., Wang, W., Fu, L., Zhu, Y., and Hao, Y. (2021). Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors. Biomaterials 268, 120537.

    Article  CAS  PubMed  Google Scholar 

  • Fu, X., Zhang, Y., Zhang, G., Li, X., Ni, S., and Cui, J. (2022). Targeted delivery of Fenton reaction packages and drugs for cancer theranostics. Appl Mater Today 26, 101353.

    Article  Google Scholar 

  • Gao, J., Luo, T., and Wang, J. (2021). Gene interfered-ferroptosis therapy for cancers. Nat Commun 12, 5311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, J., and Jiang, X. (2016). Ferroptosis is an autophagic cell death process. Cell Res 26, 1021–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, M., Yi, J., Zhu, J., Minikes, A.M., Monian, P., Thompson, C.B., and Jiang, X. (2019). Role of mitochondria in ferroptosis. Mol Cell 73, 354–363.e3.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Z., He, T., Zhang, P., Li, X., Zhang, Y., Lin, J., Hao, J., Huang, P., and Cui, J. (2020). Polypeptide-based theranostics with tumor-microenvironment-activatable cascade reaction for chemo-ferroptosis combination therapy. ACS Appl Mater Interfaces 12, 20271–20280.

    Article  CAS  PubMed  Google Scholar 

  • Ghoochani, A., Hsu, E.C., Aslan, M., Rice, M.A., Nguyen, H.M., Brooks, J.D., Corey, E., Paulmurugan, R., and Stoyanova, T. (2021). Ferroptosis inducers are a novel therapeutic approach for advanced prostate cancer. Cancer Res 81, 1583–1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong, Z., and Dai, Z. (2021). Design and challenges of sonodynamic therapy system for cancer theranostics: from equipment to sensitizers. Adv Sci 8, 2002178.

    Article  CAS  Google Scholar 

  • Green, D.R., Ferguson, T., Zitvogel, L., and Kroemer, G. (2009). Immunogenic and tolerogenic cell death. Nat Rev Immunol 9, 353–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, Z., Liu, T., Liu, C., Yang, Y., Tang, J., Song, H., Wang, Y., Yang, Y., and Yu, C. (2021). Ferroptosis-strengthened metabolic and inflammatory regulation of tumor-associated macrophages provokes potent tumoricidal activities. Nano Lett 21, 6471–6479.

    Article  CAS  PubMed  Google Scholar 

  • Hangauer, M.J., Viswanathan, V.S., Ryan, M.J., Bole, D., Eaton, J.K., Matov, A., Galeas, J., Dhruv, H.D., Berens, M.E., Schreiber, S.L., et al. (2017). Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, L., Guo, Y., Peng, Q., Zhang, Z., Ji, J., Liu, Y., Xue, Y., Li, C., Zheng, K., and Shi, X. (2022a). Dihydroartemisinin reduced lipid droplet deposition by YAP1 to promote the anti-PD-1 effect in hepatocellular carcinoma. Phytomedicine 96, 153913.

    Article  CAS  PubMed  Google Scholar 

  • Hao, M., Xia, H., Duan, J., Zhou, H., Zhang, G., Li, D., Chen, X., Wang, W., Sang, Y., Feng, S., et al. (2022b). A living material constructed from stem cells for tumor-tropic oncotherapy with real-time imaging. Adv Funct Mater 32, 2201013.

    Article  CAS  Google Scholar 

  • He, Y.J., Liu, X.Y., Xing, L., Wan, X., Chang, X., and Jiang, H.L. (2020). Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials 241, 119911.

    Article  CAS  PubMed  Google Scholar 

  • Hou, L., Pu, L., Chen, Y., Bai, Y., Zhou, Y., Chen, M., Wang, S., Lv, Y., Ma, C., Cheng, P., et al. (2022). Targeted intervention of NF2-YAP signaling axis in CD24-overexpressing cells contributes to encouraging therapeutic effects in TNBC. ACS Nano 16, 5807–5819.

    Article  CAS  PubMed  Google Scholar 

  • Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh III, H.J., Kang, R., and Tang, D. (2016). Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12, 1425–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh, C.H., Hsieh, H.C., Shih, F.H., Wang, P.W., Yang, L.X., Shieh, D.B., and Wang, Y.C. (2021). An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment. Theranostics 11, 7072–7091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Q., Wei, W., Wu, D., Huang, F., Li, M., Li, W., Yin, J., Peng, Y., Lu, Y., Zhao, Q., et al. (2022). Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to erastin-induced ferroptosis. Front Cell Dev Biol 10.

  • Jiang, Q., Wang, K., Zhang, X., Ouyang, B., Liu, H., Pang, Z., and Yang, W. (2020). Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small 16, 2001704.

    Article  CAS  Google Scholar 

  • Jiang, W., Luo, X., Wei, L., Yuan, S., Cai, J., Jiang, X., and Hu, Y. (2021). The sustainability of energy conversion inhibition for tumor ferroptosis therapy and chemotherapy. Small 17, 2102695.

    Article  CAS  Google Scholar 

  • Jiang, W., Wei, L., Chen, B., Luo, X., Xu, P., Cai, J., and Hu, Y. (2022). Platinum prodrug nanoparticles inhibiting tumor recurrence and metastasis by concurrent chemoradiotherapy. J Nanobiotechnol 20, 129.

    Article  CAS  Google Scholar 

  • Kapralov, A.A., Yang, Q., Dar, H.H., Tyurina, Y.Y., Anthonymuthu, T.S., Kim, R., St. Croix, C.M., Mikulska-Ruminska, K., Liu, B., Shrivastava, I.H., et al. (2020). Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nat Chem Biol 16, 278–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • and Karges, J. (2022). Clinical development of metal complexes as photosensitizers for photodynamic therapy of cancer. Angew Chem Int Ed 61, e202112236.

    Article  CAS  Google Scholar 

  • Kim, D.H., Kim, W.D., Kim, S.K., Moon, D.H., and Lee, S.J. (2020). TGF-β1-mediated repression of SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells. Cell Death Dis 11, 406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S.E., Zhang, L., Ma, K., Riegman, M., Chen, F., Ingold, I., Conrad, M., Turker, M. Z., Gao, M., Jiang, X., et al. (2016). Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotech 11, 977–985.

    Article  CAS  Google Scholar 

  • Koppula, P., Lei, G., Zhang, Y., Yan, Y., Mao, C., Kondiparthi, L., Shi, J., Liu, X., Horbath, A., Das, M., et al. (2022). A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nat Commun 13, 2206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft, V.A.N., Bezjian, C.T., Pfeiffer, S., Ringelstetter, L., Müller, C., Zandkarimi, F., Merl-Pham, J., Bao, X., Anastasov, N., Kössl, J., et al. (2020). GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci 6, 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Lang, X., Green, M.D., Wang, W., Yu, J., Choi, J.E., Jiang, L., Liao, P., Zhou, J., Zhang, Q., Dow, A., et al. (2019). Radiotherapy and immunotherapy promote tumoral lipid oxidation and ferroptosis via synergistic repression of SLC7A11. Cancer Discov 9, 1673–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, H., Zandkarimi, F., Zhang, Y., Meena, J.K., Kim, J., Zhuang, L., Tyagi, S., Ma, L., Westbrook, T.F., Steinberg, G.R., et al. (2020). Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol 22, 225–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei, G., Mao, C., Yan, Y., Zhuang, L., and Gan, B. (2021a). Ferroptosis, radiotherapy, and combination therapeutic strategies. Protein Cell 12, 836–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei, G., Zhang, Y., Hong, T., Zhang, X., Liu, X., Mao, C., Yan, Y., Koppula, P., Cheng, W., Sood, A.K., et al. (2021b). Ferroptosis as a mechanism to mediate p53 function in tumor radiosensitivity. Oncogene 40, 3533–3547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei, G., Zhang, Y., Koppula, P., Liu, X., Zhang, J., Lin, S.H., Ajani, J.A., Xiao, Q., Liao, Z., Wang, H., et al. (2020). The role of ferroptosis in ionizing radiation-induced cell death and tumor suppression. Cell Res 30, 146–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei, G., Zhuang, L., and Gan, B. (2022). Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer 22, 381–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, C., Wu, X., Zheng, C., Xu, S., Liu, Y., Qin, J., Fan, X., Ye, Y., and Fei, W. (2022a). Nanotechnology-integrated ferroptosis inducers: a sharp sword against tumor drug resistance. J Mater Chem B 10, 7671–7693.

    Article  CAS  PubMed  Google Scholar 

  • Li, K., Lin, C., Li, M., Xu, K., He, Y., Mao, Y., Lu, L., Geng, W., Li, X., Luo, Z., et al. (2022b). Multienzyme-like reactivity cooperatively impairs glutathione peroxidase 4 and ferroptosis suppressor protein 1 pathways in triple-negative breast cancer for sensitized ferroptosis therapy. ACS Nano 16, 2381–2398.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Yu, Q., Zhao, R., Guo, X., Liu, C., Zhang, K., Zhang, W., Liu, J., Yu, J., Wang, S., et al. (2022c). Designer exosomes for targeted delivery of a novel therapeutic cargo to enhance sorafenib-mediated ferroptosis in hepatocellular carcinoma. Front Oncol 12.

  • Li, Y., Li, M., Liu, L., Xue, C., Fei, Y., Wang, X., Zhang, Y., Cai, K., Zhao, Y., and Luo, Z. (2022d). Cell-specific metabolic reprogramming of tumors for bioactivatable ferroptosis therapy. ACS Nano 16, 3965–3984.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Yan, H., Xu, X., Liu, H., Wu, C., and Zhao, L. (2020). Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol Lett 19, 323–333.

    CAS  PubMed  Google Scholar 

  • Li, Y., Yang, J., Gu, G., Guo, X., He, C., Sun, J., Zou, H., Wang, H., Liu, S., Li, X., et al. (2022e). Pulmonary delivery of theranostic nanoclusters for lung cancer ferroptosis with enhanced chemodynamic/radiation synergistic therapy. Nano Lett 22, 963–972.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z.H., Chen, Y., Zeng, X., and Zhang, X.Z. (2021). Ultra-small FePt/siRNA loaded mesoporous silica nanoplatform to deplete cysteine for enhanced ferroptosis in breast tumor therapy. Nano Today 38, 101150.

    Article  CAS  Google Scholar 

  • Liang, H., Wu, X., Zhao, G., Feng, K., Ni, K., and Sun, X. (2021a). Renal clearable ultrasmall single-crystal Fe nanoparticles for highly selective and effective ferroptosis therapy and immunotherapy. J Am Chem Soc 143, 15812–15823.

    Article  CAS  PubMed  Google Scholar 

  • Liang, X., Chen, M., Bhattarai, P., Hameed, S., Tang, Y., and Dai, Z. (2021b). Complementing cancer photodynamic therapy with ferroptosis through iron oxide loaded porphyrin-grafted lipid nanoparticles. ACS Nano 15, 20164–20180.

    Article  CAS  PubMed  Google Scholar 

  • Liang, Y., Peng, C., Su, N., Li, Q., Chen, S., Wu, D., Wu, B., Gao, Y., Xu, Z., Dan, Q., et al. (2022). Tumor microenvironments self-activated cascade catalytic nanoscale metal organic frameworks as ferroptosis inducer for radiosensitization. Chem Eng J 437, 135309.

    Article  CAS  Google Scholar 

  • Liao, P., Wang, W., Wang, W., Kryczek, I., Li, X., Bian, Y., Sell, A., Wei, S., Grove, S., Johnson, J.K., et al. (2022). CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 40, 365–378.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Y., Chen, X., Yu, C., Xu, G., Nie, X., Cheng, Y., Luan, Y., and Song, Q. (2023). Radiotherapy-mediated redox homeostasis-controllable nanomedicine for enhanced ferroptosis sensitivity in tumor therapy. Acta Biomater 159, 300–311.

    Article  CAS  PubMed  Google Scholar 

  • Liu, D.S., Duong, C.P., Haupt, S., Montgomery, K.G., House, C.M., Azar, W.J., Pearson, H.B., Fisher, O.M., Read, M., Guerra, G.R., et al. (2017). Inhibiting the system xC/glutathione axis selectively targets cancers with mutant-p53 accumulation. Nat Commun 8, 14844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Song, X., Kuang, F., Zhang, Q., Xie, Y., Kang, R., Kroemer, G., and Tang, D. (2021). NUPR1 is a critical repressor of ferroptosis. Nat Commun 12, 647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, K., Huang, L., Qi, S., Liu, S., Xie, W., Du, L., Cui, J., Zhang, X., Zhang, B., Liu, L., et al. (2023). Ferroptosis: the entanglement between traditional drugs and nanodrugs in tumor therapy. Adv Healthc Mater 12, 2203085.

    Article  CAS  Google Scholar 

  • Liu, P., Feng, Y., Li, H., Chen, X., Wang, G., Xu, S., Li, Y., and Zhao, L. (2020a). Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett 25, 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Olszewski, K., Zhang, Y., Lim, E.W., Shi, J., Zhang, X., Zhang, J., Lee, H., Koppula, P., Lei, G., et al. (2020b). Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer. Nat Cell Biol 22, 476–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, Y., Chan, Y.T., Tan, H.Y., Zhang, C., Guo, W., Xu, Y., Sharma, R., Chen, Z.S., Zheng, Y.C., Wang, N., et al. (2022). Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res 41, 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, X., Gong, H.B., Gao, H.Y., Wu, Y.P., Sun, W.Y., Li, Z.Q., Wang, G., Liu, B., Liang, L., Kurihara, H., et al. (2021). Oxygenated phosphatidylethanolamine navigates phagocytosis of ferroptotic cells by interacting with TLR2. Cell Death Differ 28, 1971–1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, C., Lv, Q., Zhang, K., Tang, Y., Zhang, Y., Shen, Y., Lei, H., and Zhu, L. (2021). NRF2-GPX4/SOD2 axis imparts resistance to EGFR-tyrosine kinase inhibitors in non-small-cell lung cancer cells. Acta Pharmacol Sin 42, 613–623.

    Article  CAS  PubMed  Google Scholar 

  • Magtanong, L., Ko, P.J., To, M., Cao, J.Y., Forcina, G.C., Tarangelo, A., Ward, C.C., Cho, K., Patti, G.J., Nomura, D.K., et al. (2019). Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem Biol 26, 420–432.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., Lee, H., Koppula, P., Wu, S., Zhuang, L., Fang, B., et al. (2021). DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593, 586–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, J.D., Cabral, H., Stylianopoulos, T., and Jain, R.K. (2020). Improving cancer immunotherapy using nanomedicines: progress, opportunities and challenges. Nat Rev Clin Oncol 17, 251–266.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsushita, M., Freigang, S., Schneider, C., Conrad, M., Bornkamm, G.W., and Kopf, M. (2015). T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J Exp Med 212, 555–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, X., Deng, J., Liu, F., Guo, T., Liu, M., Dai, P., Fan, A., Wang, Z., and Zhao, Y. (2019). Triggered all-active metal organic framework: ferroptosis machinery contributes to the apoptotic photodynamic antitumor therapy. Nano Lett 19, 7866–7876.

    Article  CAS  PubMed  Google Scholar 

  • Mishima, E., Ito, J., Wu, Z., Nakamura, T., Wahida, A., Doll, S., Tonnus, W., Nepachalovich, P., Eggenhofer, E., Aldrovandi, M., et al. (2022). A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales, M., and Xue, X. (2021). Targeting iron metabolism in cancer therapy. Theranostics 11, 8412–8429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng, M.S.F., Tan, L., Wang, Q., Mackay, C.R., and Ng, L.G. (2021). Neutrophils in cancer—unresolved questions. Sci China Life Sci 64, 1829–1841.

    Article  CAS  PubMed  Google Scholar 

  • Orlando, U.D., Castillo, A.F., Medrano, M.A.R., Solano, A.R., Maloberti, P.M., and Podesta, E.J. (2019). Acyl-CoA synthetase-4 is implicated in drug resistance in breast cancer cell lines involving the regulation of energy-dependent transporter expression. Biochem Pharmacol 159, 52–63.

    Article  CAS  PubMed  Google Scholar 

  • Pisanu, M.E., Noto, A., De Vitis, C., Morrone, S., Scognamiglio, G., Botti, G., Venuta, F., Diso, D., Jakopin, Z., Padula, F., et al. (2017). Blockade of stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells. Cancer Lett 406, 93–104.

    Article  CAS  PubMed  Google Scholar 

  • Polewski, M.D., Reveron-Thornton, R.F., Cherryholmes, G.A., Marinov, G.K., Cassady, K., and Aboody, K.S. (2016). Increased expression of system xc in glioblastoma confers an altered metabolic state and temozolomide resistance. Mol Cancer Res 14, 1229–1242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh, J.L., Kim, E.H., Jang, H.J., Park, J.Y., and Shin, D. (2016). Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett 381, 96–103.

    Article  CAS  PubMed  Google Scholar 

  • and Santoro, M.M. (2020). The antioxidant role of non-mitochondrial CoQ10: mystery solved! Cell Metab 31, 13–15.

    Article  CAS  PubMed  Google Scholar 

  • Saw, P.E., Xu, X., Chen, J., and Song, E.W. (2021). Non-coding RNAs: the new central dogma of cancer biology. Sci China Life Sci 64, 22–50.

    Article  CAS  PubMed  Google Scholar 

  • Schoenfeld, J.D., Sibenaller, Z.A., Mapuskar, K.A., Wagner, B.A., Cramer-Morales, K. L., Furqan, M., Sandhu, S., Carlisle, T.L., Smith, M.C., Abu Hejleh, T., et al. (2017). O2•− and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell 31, 487–500.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, P., Hu-Lieskovan, S., Wargo, J.A., and Ribas, A. (2017). Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, Z., Liu, T., Li, Y., Lau, J., Yang, Z., Fan, W., Zhou, Z., Shi, C., Ke, C., Bregadze, V. I., et al. (2018). Fenton-reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of orthotopic brain tumors. ACS Nano 12, 11355–11365.

    Article  CAS  PubMed  Google Scholar 

  • Soares, M.P., and Hamza, I. (2016). Macrophages and iron metabolism. Immunity 44, 492–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, R., Li, T., Ye, J., Sun, F., Hou, B., Saeed, M., Gao, J., Wang, Y., Zhu, Q., Xu, Z., et al. (2021a). Acidity-activatable dynamic nanoparticles boosting ferroptotic cell death for immunotherapy of cancer. Adv Mater 33, 2101155.

    Article  CAS  Google Scholar 

  • Song, X., Liu, J., Kuang, F., Chen, X., Zeh III, H.J., Kang, R., Kroemer, G., Xie, Y., and Tang, D. (2021b). PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. Cell Rep 34, 108767.

    Article  CAS  PubMed  Google Scholar 

  • Song, X., Zhu, S., Chen, P., Hou, W., Wen, Q., Liu, J., Xie, Y., Liu, J., Klionsky, D.J., Kroemer, G., et al. (2018). AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc activity. Curr Biol 28, 2388–2399.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, Z., Jia, G., Ma, P., and Cang, S. (2021c). Exosomal miR-4443 promotes cisplatin resistance in non-small cell lung carcinoma by regulating FSP1 m6A modification-mediated ferroptosis. Life Sci 276, 119399.

    Article  CAS  PubMed  Google Scholar 

  • and Stockwell, B.R. (2022). Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., Fulda, S., Gascón, S., Hatzios, S.K., Kagan, V.E., et al. (2017). Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell, B.R., Jiang, X., and Gu, W. (2020). Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol 30, 478–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, H., Cai, H., Xu, C., Zhai, H., Lux, F., Xie, Y., Feng, L., Du, L., Liu, Y., Sun, X., et al. (2022). AGuIX nanoparticles enhance ionizing radiation-induced ferroptosis on tumor cells by targeting the NRF2-GPX4 signaling pathway. J Nanobiotechnol 20, 449.

    Article  CAS  Google Scholar 

  • Tang, D., Chen, X., Kang, R., and Kroemer, G. (2021a). Ferroptosis: molecular mechanisms and health implications. Cell Res 31, 107–125.

    Article  CAS  PubMed  Google Scholar 

  • Tang, D., Kepp, O., and Kroemer, G. (2021b). Ferroptosis becomes immunogenic: implications for anticancer treatments. Oncoimmunology 10, 1862949.

    Article  Google Scholar 

  • Terzi, E.M., Sviderskiy, V.O., Alvarez, S.W., Whiten, G.C., and Possemato, R. (2021). Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5. Sci Adv 7, eabg4302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ti, D., Bai, M., Li, X., Wei, J., Chen, D., Wu, Z., Wang, Y., and Han, W. (2021). Adaptive T cell immunotherapy in cancer. Sci China Life Sci 64, 363–371.

    Article  PubMed  Google Scholar 

  • Tian, X., Ruan, L., Zhou, S., Wu, L., Cao, J., Qi, X., Zhang, X., and Shen, S. (2022). Appropriate size of Fe3O4 nanoparticles for cancer therapy by ferroptosis. ACS Appl Bio Mater 5, 1692–1699.

    Article  CAS  PubMed  Google Scholar 

  • Tsvetkov, P., Coy, S., Petrova, B., Dreishpoon, M., Verma, A., Abdusamad, M., Rossen, J., Joesch-Cohen, L., Humeidi, R., Spangler, R.D., et al. (2022). Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • U.S. National Library of Medicine. (2017). U.S. National Library of Medicine. Study of Artesunate in Metastatic Breast Cancer. (Identifier NCT00764036). Available from URL: https://clinicaltrials.gov/ct2/show/NCT00764036.

  • U.S. National Library of Medicine. (2019). U.S. National Library of Medicine. Sulfasalazine and Stereotactic Radiosurgery for Recurrent Glioblastoma (Identifier NCT04205357). Available from URL: https://ClinicalTrials.gov/show/NCT04205357.

  • U.S. National Library of Medicine. (2020). SBRT+TACE+Sorafenib Vs Sorafenib in the Treatment of uHCC With PVTT (Identifier NCT04387695). Available from URL: https://clinicaltrials.gov/ct2/show/NCT04387695.

  • U.S. National Library of Medicine. (2021). Efficacy of Statin Addition to Neoadjuvant Chemotherapy Protocols for Breast Cancer (Identifier NCT04705909). Available from URL: https://clinicaltrials.gov/ct2/show/NCT04705909.

  • Ubellacker, J.M., Tasdogan, A., Ramesh, V., Shen, B., Mitchell, E.C., Martin-Sandoval, M.S., Gu, Z., McCormick, M.L., Durham, A.B., Spitz, D.R., et al. (2020). Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma, N., Vinik, Y., Saroha, A., Nair, N.U., Ruppin, E., Mills, G., Karn, T., Dubey, V., Khera, L., Raj, H., et al. (2020). Synthetic lethal combination targeting BET uncovered intrinsic susceptibility of TNBC to ferroptosis. Sci Adv 6, eaba8968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viswanathan, V.S., Ryan, M.J., Dhruv, H.D., Gill, S., Eichhoff, O.M., Seashore-Ludlow, B., Kaffenberger, S.D., Eaton, J.K., Shimada, K., Aguirre, A.J., et al. (2017). Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547, 453–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh, A.P.G., Gordon, H.N., Peter, K., and Wang, X. (2021). Ultrasonic particles: An approach for targeted gene delivery. Adv Drug Deliv Rev 179, 113998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Li, X., Mu, Y., Lu, C., Tang, S., Lu, K., Qiu, X., Wei, A., Cheng, Y., and Wei, W. (2019a). The iron chelator desferrioxamine synergizes with chemotherapy for cancer treatment. J Trace Elem Med Biol 56, 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Li, F., Qiao, R., Hu, X., Liao, H., Chen, L., Wu, J., Wu, H., Zhao, M., Liu, J., et al. (2018). Arginine-rich manganese silicate nanobubbles as a ferroptosis-inducing agent for tumor-targeted theranostics. ACS Nano 12, 12380–12392.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Green, M., Choi, J.E., Gijón, M., Kennedy, P.D., Johnson, J.K., Liao, P., Lang, X., Kryczek, I., Sell, A., et al. (2019b). CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569, 270–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Hua, P., He, C., and Chen, M. (2022a). Non-apoptotic cell death-based cancer therapy: molecular mechanism, pharmacological modulators, and nanomedicine. Acta Pharm Sin B 12, 3567–3593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Tian, Q., Hao, Y., Yao, W., Lu, J., Chen, C., Chen, X., Lin, Y., Huang, Q., Xu, L., et al. (2022b). The kinase complex mTORC2 promotes the longevity of virus-specific memory CD4+ T cells by preventing ferroptosis. Nat Immunol 23, 303–317.

    Article  PubMed  Google Scholar 

  • Wen, Q., Liu, J., Kang, R., Zhou, B., and Tang, D. (2019). The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun 510, 278–283.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C., Liu, Z., Chen, Z., Xu, D., Chen, L., Lin, H., and Shi, J. (2021a). A nonferrous ferroptosis-like strategy for antioxidant inhibition-synergized nanocatalytic tumor therapeutics. Sci Adv 7, eabj8833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, C., Shen, Z., Lu, Y., Sun, F., and Shi, H. (2022a). p53 promotes ferroptosis in macrophages treated with Fe3O4 nanoparticles. ACS Appl Mater Interfaces 14, 42791–42803.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C., Xu, D., Ge, M., Luo, J., Chen, L., Chen, Z., You, Y., Zhu, Y., Lin, H., and Shi, J. (2022b). Blocking glutathione regeneration: Inorganic NADPH oxidase nanozyme catalyst potentiates tumoral ferroptosis. Nano Today 46, 101574.

    Article  CAS  Google Scholar 

  • Wu, F., Du, Y., Yang, J., Shao, B., Mi, Z., Yao, Y., Cui, Y., He, F., Zhang, Y., and Yang, P. (2022c). Peroxidase-like active nanomedicine with dual glutathione depletion property to restore oxaliplatin chemosensitivity and promote programmed cell death. ACS Nano 16, 3647–3663.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Bao, L., Zhang, Z., and Yi, X. (2017). Nrf2 induces cisplatin resistance via suppressing the iron export related gene SLC40A1 in ovarian cancer cells. Oncotarget 8, 93502–93515.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, S.Y., Wang, H., Shao, Z.M., and Jiang, Y.Z. (2021b). Triple-negative breast cancer: new treatment strategies in the era of precision medicine. Sci China Life Sci 64, 372–388.

    Article  PubMed  Google Scholar 

  • Xie, L., Li, J., Wang, G., Sang, W., Xu, M., Li, W., Yan, J., Li, B., Zhang, Z., Zhao, Q., et al. (2022). Phototheranostic metal-phenolic networks with antiexosomal PD-L1 enhanced ferroptosis for synergistic immunotherapy. J Am Chem Soc 144, 787–797.

    Article  CAS  PubMed  Google Scholar 

  • Xu, B., Zhu, W.J., Peng, Y.J., and Cheng, S.D. (2021a). Curcumin reverses the sunitinib resistance in clear cell renal cell carcinoma (ccRCC) through the induction of ferroptosis via the ADAMTS18 gene. Transl Cancer Res TCR 10, 3158–3167.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., Sun, S., Johnson, T., Qi, R., Zhang, S., Zhang, J., and Yang, K. (2021b). The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep 35, 109235.

    Article  CAS  PubMed  Google Scholar 

  • Xu, H., Ye, D., Ren, M., Zhang, H., and Bi, F. (2021c). Ferroptosis in the tumor microenvironment: perspectives for immunotherapy. Trends Mol Med 27, 856–867.

    Article  CAS  PubMed  Google Scholar 

  • Xu, R., Yang, J., Qian, Y., Deng, H., Wang, Z., Ma, S., Wei, Y., Yang, N., and Shen, Q. (2021d). Ferroptosis/pyroptosis dual-inductive combinational anti-cancer therapy achieved by transferrin decorated nanoMOF. Nanoscale Horiz 6, 348–356.

    Article  CAS  PubMed  Google Scholar 

  • Xu, S., Min, J., and Wang, F. (2021e). Ferroptosis: an emerging player in immune cells. Sci Bull 66, 2257–2260.

    Article  CAS  Google Scholar 

  • Xu, T., Ma, Y., Yuan, Q., Hu, H., Hu, X., Qian, Z., Rolle, J.K., Gu, Y., and Li, S. (2020). Enhanced ferroptosis by oxygen-boosted phototherapy based on a 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano 14, 3414–3425.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., Guo, Y., Zhang, C., Zhan, M., Jia, L., Song, S., Jiang, C., Shen, M., and Shi, X. (2022). Fibronectin-coated metal-phenolic networks for cooperative tumor chemo-/chemodynamic/immune therapy via enhanced ferroptosis-mediated immunogenic cell death. ACS Nano 16, 984–996.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Jia, Z., Zhang, J., Pan, X., Wei, Y., Ma, S., Yang, N., Liu, Z., and Shen, Q. (2022a). Metabolic intervention nanoparticles for triple-negative breast cancer therapy via overcoming FSP1-mediated ferroptosis resistance. Adv Healthc Mater 11, 2102799.

    Article  CAS  Google Scholar 

  • Yang, J., Ma, S., Xu, R., Wei, Y., Zhang, J., Zuo, T., Wang, Z., Deng, H., Yang, N., and Shen, Q. (2021). Smart biomimetic metal organic frameworks based on ROS-ferroptosis-glycolysis regulation for enhanced tumor chemo-immunotherapy. J Control Release 334, 21–33.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Wu, X., Hu, J., Wang, Y., Wang, Y., Zhang, L., Huang, W., Wang, X., Li, N., Liao, L., et al. (2022b). COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma. J Hepatol 76, 1138–1150.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., Cheah, J.H., Clemons, P.A., Shamji, A.F., Clish, C.B., et al. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, X., Li, W., Fang, D., Xiao, C., Wu, X., Li, M., and Luo, Z. (2021). Emerging roles of energy metabolism in ferroptosis regulation of tumor cells. Adv Sci 8, 2100997.

    Article  CAS  Google Scholar 

  • Ye, Z., Hu, Q., Zhuo, Q., Zhu, Y., Fan, G., Liu, M., Sun, Q., Zhang, Z., Liu, W., Xu, W., et al. (2020). Abrogation of ARF6 promotes RSL3-induced ferroptosis and mitigates gemcitabine resistance in pancreatic cancer cells. Am J Cancer Res 10, 1182–1193.

    PubMed  PubMed Central  Google Scholar 

  • Yin, W., Chang, J., Sun, J., Zhang, T., Zhao, Y., Li, Y., and Dong, H. (2023). Nanomedicine-mediated ferroptosis targeting strategies for synergistic cancer therapy. J Mater Chem B 11, 1171–1190.

    Article  CAS  PubMed  Google Scholar 

  • Yue, R., Zhang, C., Xu, L., Wang, Y., Guan, G., Lei, L., Zhang, X., and Song, G. (2022). Dual key co-activated nanoplatform for switchable MRI monitoring accurate ferroptosis-based synergistic therapy. Chem 8, 1956–1981.

    Article  CAS  Google Scholar 

  • Zanganeh, S., Hutter, G., Spitler, R., Lenkov, O., Mahmoudi, M., Shaw, A., Pajarinen, J.S., Nejadnik, H., Goodman, S., Moseley, M., et al. (2016). Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotech 11, 986–994.

    Article  CAS  Google Scholar 

  • Zeng, Z., and Pu, K. (2020). Improving cancer immunotherapy by cell membrane-camouflaged nanoparticles. Adv Funct Mater 30, 2004397.

    Article  CAS  Google Scholar 

  • Zhang, C., Liu, X., Jin, S., Chen, Y., and Guo, R. (2022a). Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol Cancer 21, 47.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., Li, F., Lu, G.H., Nie, W., Zhang, L., Lv, Y., Bao, W., Gao, X., Wei, W., Pu, K., et al. (2019). Engineering magnetosomes for ferroptosis/immunomodulation synergism in cancer. ACS Nano 13, 5662–5673.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H.L., Hu, B.X., Li, Z.L., Du, T., Shan, J.L., Ye, Z.P., Peng, X.D., Li, X., Huang, Y., Zhu, X.Y., et al. (2022b). PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nat Cell Biol 24, 88–98.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Deng, T., Liu, R., Ning, T., Yang, H., Liu, D., Zhang, Q., Lin, D., Ge, S., Bai, M., et al. (2020a). CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer 19, 43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, L., Song, Y., Cao, K., Du, Y., Han, M., Shi, Z., Yan, F., and Feng, S. (2022c). Hepcidin-based nanocomposites for enhanced cancer immunotherapy by modulating iron export-mediated N6-methyladenosine RNA transcript. Adv Funct Mater 32, 2107195.

    Article  CAS  Google Scholar 

  • Zhang, Y., Fu, X., Jia, J., Wikerholmen, T., Xi, K., Kong, Y., Wang, J., Chen, H., Ma, Y., Li, Z., et al. (2020b). Glioblastoma therapy using codelivery of cisplatin and glutathione peroxidase targeting siRNA from iron oxide nanoparticles. ACS Appl Mater Interfaces 12, 43408–43421.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Swanda, R.V., Nie, L., Liu, X., Wang, C., Lee, H., Lei, G., Mao, C., Koppula, P., Cheng, W., et al. (2021a). mTORC1 couples cyst(e)ine availability with GPX4 protein synthesis and ferroptosis regulation. Nat Commun 12, 1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Lu, M., Chen, C., Tong, X., Li, Y., Yang, K., Lv, H., Xu, J., and Qin, L. (2021b). Holo-lactoferrin: the link between ferroptosis and radiotherapy in triple-negative breast cancer. Theranostics 11, 3167–3182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, J., Chen, Y., Xiong, T., Han, S., Li, C., He, Y., He, Y., Zhao, G., Wang, T., Wang, L., et al. (2023). Clustered cobalt nanodots initiate ferroptosis by upregulating heme oxygenase 1 for radiotherapy sensitization. Small 19, 2206415.

    Article  CAS  Google Scholar 

  • Zheng, Y., Li, X., Dong, C., Ding, L., Huang, H., Zhang, T., Chen, Y., and Wu, R. (2022). Ultrasound-augmented nanocatalytic ferroptosis reverses chemotherapeutic resistance and induces synergistic tumor nanotherapy. Adv Funct Mater 32, 2107529.

    Article  CAS  Google Scholar 

  • Zhou, A., Fang, T., Chen, K., Xu, Y., Chen, Z., and Ning, X. (2022a). Biomimetic activator of sonodynamic ferroptosis amplifies inherent peroxidation for improving the treatment of breast cancer. Small 18, 2106568.

    Article  CAS  Google Scholar 

  • Zhou, H.H., Chen, X., Cai, L.Y., Nan, X.W., Chen, J.H., Chen, X.X., Yang, Y., Xing, Z. H., Wei, M.N., Li, Y., et al. (2019). Erastin reverses ABCB1-mediated docetaxel resistance in ovarian cancer. Front Oncol 9, 1398.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z., Liang, H., Yang, R., Yang, Y., Dong, J., Di, Y., and Sun, M. (2022b). Glutathione depletion-induced activation of dimersomes for potentiating the ferroptosis and immunotherapy of “cold” tumor. Angew Chem Int Ed 61, e202202843.

    Article  CAS  Google Scholar 

  • Zhu, H., Klement, J.D., Lu, C., Redd, P.S., Yang, D., Smith, A.D., Poschel, D.B., Zou, J., Liu, D., Wang, P.G., et al. (2021). Asah2 represses the p53-Hmox1 axis to protect myeloid-derived suppressor cells from ferroptosis. J Immunol 206, 1395–1404.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J., Chu, C., Li, D., Pang, X., Zheng, H., Wang, J., Shi, Y., Zhang, Y., Cheng, Y., Ren, E., et al. (2019). Fe(III)-porphyrin sonotheranostics: a green triple-regulated ROS generation nanoplatform for enhanced cancer imaging and therapy. Adv Funct Mater 29, 1904056.

    Article  Google Scholar 

  • Zou, Y., Li, H., Graham, E.T., Deik, A.A., Eaton, J.K., Wang, W., Sandoval-Gomez, G., Clish, C.B., Doench, J.G., and Schreiber, S.L. (2020). Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 16, 302–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo, T., Fang, T., Zhang, J., Yang, J., Xu, R., Wang, Z., Deng, H., and Shen, Q. (2021). pH-sensitive molecular-switch-containing polymer nanoparticle for breast cancer therapy with ferritinophagy-cascade ferroptosis and tumor immune activation. Adv Healthc Mater 10, 2100683.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (81901794), the China Postdoctoral Science Foundation funded project (2021M693632), and Guangdong Provincial Fund for Distinguished Young Scholars (2021B1515020066)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phei Er Saw.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Xu, X. & Saw, P.E. Nanomedicine targeting ferroptosis to overcome anticancer therapeutic resistance. Sci. China Life Sci. 67, 19–40 (2024). https://doi.org/10.1007/s11427-022-2340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2340-4

Navigation