Skip to main content
Log in

Local administration of liposomal-based Plekhf1 gene therapy attenuates pulmonary fibrosis by modulating macrophage polarization

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease with limited therapeutic options. Macrophages, particularly alternatively activated macrophages (M2), have been recognized to contribute to the pathogenesis of pulmonary fibrosis. Therefore, targeting macrophages might be a viable therapeutic strategy for IPF. Herein, we report a potential nanomedicine-based gene therapy for IPF by modulating macrophage M2 activation. In this study, we illustrated that the levels of pleckstrin homology and FYVE domain containing 1 (Plekhf1) were increased in the lungs originating from IPF patients and PF mice. Further functionality studies identified the pivotal role of Plekhf1 in macrophage M2 activation. Mechanistically, Plekhf1 was upregulated by IL-4/IL-13 stimulation, after which Plekhf1 enhanced PI3K/Akt signaling to promote the macrophage M2 program and exacerbate pulmonary fibrosis. Therefore, intratracheal administration of Plekhf1 siRNA-loaded liposomes could effectively suppress the expression of Plekhf1 in the lungs and notably protect mice against BLM-induced lung injury and fibrosis, concomitant with a significant reduction in M2 macrophage accumulation in the lungs. In conclusion, Plekhf1 may play a crucial role in the pathogenesis of pulmonary fibrosis, and Plekhf1 siRNA-loaded liposomes might be a promising therapeutic approach against pulmonary fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashcroft, T., Simpson, J.M., and Timbrell, V. (1988). Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol 41, 467–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne, A.J., Maher, T.M., and Lloyd, C.M. (2016). Pulmonary macrophages: a new therapeutic pathway in fibrosing lung disease? Trends Mol Med 22, 303–316.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Q., Gao, M., Li, Z., Xiao, Y., Bai, X., Boakye-Yiadom, K.O., Xu, X., and Zhang, X.Q. (2020). Biodegradable nanoparticles decorated with different carbohydrates for efficient macrophage-targeted gene therapy. J Control Release 323, 179–190.

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias, A.J., Aksoylar, H.I., and Horng, T. (2015). Control of macrophage metabolism and activation by mTOR and Akt signaling. Semin Immunol 27, 286–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covvey, J.R., and Mancl, E.E. (2014). Recent evidence for pharmacological treatment of idiopathic pulmonary fibrosis. Ann Pharmacother 48, 1611–1619.

    Article  PubMed  Google Scholar 

  • Elhissi, A. (2017). Liposomes for pulmonary drug delivery: the role of formulation and inhalation device design. Curr Pharm Des 23, 362–372.

    Article  CAS  PubMed  Google Scholar 

  • Ge, G., Bai, J., Wang, Q., Liang, X., Tao, H., Chen, H., Wei, M., Niu, J., Yang, H., Xu, Y., et al. (2022). Punicalagin ameliorates collagen-induced arthritis by downregulating M1 macrophage and pyroptosis via NF-κB signaling pathway. Sci China Life Sci 65, 588–603.

    Article  CAS  PubMed  Google Scholar 

  • George, P.M., Patterson, C.M., Reed, A.K., and Thillai, M. (2019). Lung transplantation for idiopathic pulmonary fibrosis. Lancet Respir Med 7, 271–282.

    Article  PubMed  Google Scholar 

  • Gieseck, R.L. 3rd, Wilson, M.S., and Wynn, T.A. (2018). Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 18, 62–76.

    Article  CAS  PubMed  Google Scholar 

  • Gordon, S., and Martinez, F.O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604.

    Article  CAS  PubMed  Google Scholar 

  • Hu, X., Wang, H., Han, C., and Cao, X. (2018). Src promotes anti-inflammatory (M2) macrophage generation via the IL-4/STAT6 pathway. Cytokine 111, 209–215.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y., Wang, Q., Yu, J., Zhou, Q., Deng, Y., Liu, J., Zhang, L., Xu, Y., Xiong, W., and Wang, Y. (2022). Tartrate-resistant acid phosphatase 5 promotes pulmonary fibrosis by modulating β-catenin signaling. Nat Commun 13, 114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Q., Deng, G., Wei, R., Wang, Q., Zou, D., and Wei, J. (2020). Comprehensive identification of key genes involved in development of diabetes mellitus-related atherogenesis using weighted gene correlation network analysis. Front Cardiovasc Med 7, 580573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, T., Gao, J., Cai, L., Xie, H., Wang, Y., Wang, Y., and Zhou, Q. (2022). Treating pulmonary fibrosis with non-viral gene therapy: from bench to bedside. Pharmaceutics 14, 813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ickenstein, L.M., and Garidel, P. (2019). Lipid-based nanoparticle formulations for small molecules and RNA drugs. Expert Opin Drug Deliv 16, 1205–1226.

    Article  CAS  PubMed  Google Scholar 

  • King, T.E. Jr, Pardo, A., and Selman, M. (2011). Idiopathic pulmonary fibrosis. Lancet 378, 1949–1961.

    Article  PubMed  Google Scholar 

  • Kulkarni, J.A., Witzigmann, D., Chen, S., Cullis, P.R., and van der Meel, R. (2019). Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc Chem Res 52, 2435–2444.

    Article  CAS  PubMed  Google Scholar 

  • Larson-Casey, J.L., Deshane, J.S., Ryan, A.J., Thannickal, V.J., and Carter, A.B. (2016). Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity 44, 582–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, T., Qin, K., Li, N., Han, C., and Cao, X. (2019). An endosomal LAPF is required for macrophage endocytosis and elimination of bacteria. Proc Natl Acad Sci USA 116, 12958–12963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, X., Luo, M., Shao, B., Yang, J.Y., Tong, A., Wang, R.B., Liu, Y.T., Jun, R., Liu, T., Yi, T., et al. (2022). Phosphatidylserine released from apoptotic cells in tumor induces M2-like macrophage polarization through the PSR-STAT3-JMJD3 axis. Cancer Commun 42, 205–222.

    Article  Google Scholar 

  • Lin, W.J., Yang, C.Y., Li, L.L., Yi, Y.H., Chen, K.W., Lin, Y.C., Liu, C.C., and Lin, C.H. (2012). Lysosomal targeting of phafin1 mediated by Rab7 induces autophagosome formation. Biochem Biophys Res Commun 417, 35–42.

    Article  CAS  PubMed  Google Scholar 

  • Miao, K., Pan, T., Mou, Y., Zhang, L., Xiong, W., Xu, Y., Yu, J., and Wang, Y. (2020). Scutellarein inhibits BLM-mediated pulmonary fibrosis by affecting fibroblast differentiation, proliferation, and apoptosis. Ther Adv Chronic Dis 11, 204062232094018.

    Article  Google Scholar 

  • Mou, Y., Wu, G.R., Wang, Q., Pan, T., Zhang, L., Xu, Y., Xiong, W., Zhou, Q., and Wang, Y. (2022). Macrophage-targeted delivery ofsiRNA to silence Mecp2 gene expression attenuates pulmonary fibrosis. Bioeng Transl Med 7, e10280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natrajan, R., Mackay, A., Wilkerson, P.M., Lambros, M.B., Wetterskog, D., Arnedos, M., Shiu, K.K., Geyer, F.C., Langerød, A., Kreike, B., et al. (2012). Functional characterization of the 19q12 amplicon in grade III breast cancers. Breast Cancer Res 14, R53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, T., Zhou, Q., Miao, K., Zhang, L., Wu, G., Yu, J., Xu, Y., Xiong, W., Li, Y., and Wang, Y. (2021). Suppressing Sart1 to modulate macrophage polarization by siRNA-loaded liposomes: a promising therapeutic strategy for pulmonary fibrosis. Theranostics 11, 1192–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, W.S., Do Heo, W., Whalen, J.H., O’Rourke, N.A., Bryan, H.M., Meyer, T., and Teruel, M.N. (2008). Comprehensive identification of PIP3-regulated PH domains from C. elegans to H. sapiens by model prediction and live imaging. Mol Cell 30, 381–392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pidala, J., Sigdel, T.K., Wang, A., Hsieh, S., Inamoto, Y., Martin, P.J., Flowers, M.E., Hansen, J.A., Lee, S.J., and Sarwal, M.M. (2017). A combined biomarker and clinical panel for chronic graft versus host disease diagnosis. J Path Clin Res 3, 3–16.

    Article  CAS  Google Scholar 

  • Prasse, A., Pechkovsky, D.V., Toews, G.B., Jungraithmayr, W., Kollert, F., Goldmann, T., Vollmer, E., Müller-Quernheim, J., and Zissel, G. (2006). A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am J Respir Crit Care Med 173, 781–792.

    Article  CAS  PubMed  Google Scholar 

  • Qu, M.H., Zeng, R.F., Fang, S., Dai, Q.S., Li, H.P., and Long, J.T. (2014). Liposome-based co-delivery of siRNA and docetaxel for the synergistic treatment of lung cancer. Int J Pharm 474, 112–122.

    Article  CAS  PubMed  Google Scholar 

  • Raghu, G., Collard, H.R., Egan, J.J., Martinez, F.J., Behr, J., Brown, K.K., Colby, T.V., Cordier, J.F., Flaherty, K.R., Lasky, J.A., et al. (2011). An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183, 788–824.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao, L.Z., Wang, Y., Zhang, L., Wu, G., Zhang, L., Wang, F.X., Chen, L. M., Sun, F., Jia, S., Zhang, S., et al. (2021). IL-24 deficiency protects mice against bleomycin-induced pulmonary fibrosis by repressing IL-4-induced M2 program in macrophages. Cell Death Differ 28, 1270–1283.

    Article  CAS  PubMed  Google Scholar 

  • Richeldi, L., Collard, H.R., and Jones, M.G. (2017). Idiopathic pulmonary fibrosis. Lancet 389, 1941–1952.

    Article  PubMed  Google Scholar 

  • Rückerl, D., Jenkins, S.J., Laqtom, N.N., Gallagher, I.J., Sutherland, T.E., Duncan, S., Buck, A.H., and Allen, J.E. (2012). Induction of IL-4Rα-dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo. Blood 120, 2307–2316.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shim, G., Choi, H., Lee, S., Choi, J., Yu, Y.H., Park, D.E., Choi, Y., Kim, C. W., and Oh, Y.K. (2013). Enhanced intrapulmonary delivery of anticancer siRNA for lung cancer therapy using cationic ethylphosphocholine-based nanolipoplexes. Mol Ther 21, 816–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, E., Ouyang, N., Hörbelt, M., Antus, B., Wang, M., and Exton, M.S. (2000). Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol 204, 19–28.

    Article  CAS  PubMed  Google Scholar 

  • Su, P., Peng, Z., Xu, B., Yang, B., and Jin, F. (2021). Establishment and validation of an individualized macrophage-related gene signature to predict overall survival in patients with triple negative breast cancer. PeerJ 9, e12383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsukui, T., Sun, K.H., Wetter, J.B., Wilson-Kanamori, J.R., Hazelwood, L. A., Henderson, N.C., Adams, T.S., Schupp, J.C., Poli, S.D., Rosas, I.O., et al. (2020). Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nat Commun 11, 1920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vancheri, C., Failla, M., Crimi, N., and Raghu, G. (2010). Idiopathic pulmonary fibrosis: a disease with similarities and links to cancer biology. Eur Respir J 35, 496–504.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Liu, J., Hu, Y., Pan, T., Xu, Y., Yu, J., Xiong, W., Zhou, Q., and Wang, Y. (2021a). Local administration of liposomal-based Srpx2 gene therapy reverses pulmonary fibrosis by blockading fibroblast-to-myofibroblast transition. Theranostics 11, 7110–7125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., Yu, J., Hu, Y., Chen, X., Zhang, L., Pan, T., Miao, K., Mou, Y., Xu, Y., Xiong, W., et al. (2020). Indirubin alleviates bleomycin-induced pulmonary fibrosis in mice by suppressing fibroblast to myofibroblast differentiation. Biomed Pharmacother 131, 110715.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Zhang, L., Huang, T., Wu, G.R., Zhou, Q., Wang, F.X., Chen, L. M., Sun, F., Lv, Y., Xiong, F., et al. (2022). The methyl-CpG-binding domain 2 facilitates pulmonary fibrosis by orchestrating fibroblast to myofibroblast differentiation. Eur Respir J 60, 2003697.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Zhang, L., Wu, G.R., Zhou, Q., Yue, H., Rao, L.Z., Yuan, T., Mo, B., Wang, F.X., Chen, L.M., et al. (2021b). MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program. Sci Adv 7, eabb6075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn, T.A. (2011). Integrating mechanisms of pulmonary fibrosis. J Exp Med 208, 1339–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wynn, T., and Barron, L. (2010). Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30, 245–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao, H., Guo, Y., Li, B., Li, X., Wang, Y., Han, S., Cheng, D., and Shuai, X. (2020). M2-like tumor-associated macrophage-targeted codelivery of STAT6 inhibitor and IKKβ siRNA induces M2-to-M1 repolarization for cancer immunotherapy with low immune side effects. ACS Cent Sci 6, 1208–1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Q., Guo, M., Jin, X., Jin, Q., He, Z., Xiao, W., Zou, W., Xu, R., Cheng, L., He, S., et al. (2021). Interferon regulatory factor 5 siRNA-loaded folate-modified cationic liposomes for acute lung injury therapy. J Biomed Nanotechnol 17, 466–476.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Wang, Q., Wan, K.W., Ahmed, W., Phoenix, D.A., Zhang, Z., Elrayess, M.A., Elhissi, A., and Sun, X. (2019). Liposome mediated-CYP1A1 gene silencing nanomedicine prepared using lipid film-coated proliposomes as a potential treatment strategy of lung cancer. Int J Pharm 566, 185–193.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S.J., Kong, F.Q., Jie, J., Li, Q., Liu, H., Xu, A.D., Yang, Y.Q., Jiang, B., Wang, D.D., Zhou, Z.Q., et al. (2020). Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway. Theranostics 10, 17–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, M., Long, J., Chelariu-Raicu, A., Mullikin, H., Vilsmaier, T., Vattai, A., Heidegger, H.H., Batz, F., Keckstein, S., Jeschke, U., et al. (2021). Identification of a novel tumor microenvironment prognostic signature for advanced-stage serous ovarian cancer. Cancers 13, 3343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (82090015) and the China Postdoctoral Science Foundation (2021T140459, 2020M681325).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Zhou, Shengzhong Duan or Weining Xiong.

Ethics declarations

All authors declare that there are no conflicts of interest. All authors state that they conformed with the Helsinki Declaration of 1975 (as revised in 2008) concerning Human and Animal Rights, and that they followed the policy concerning Informed Consent as shown on Springer.com.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Hou, C., Liu, J. et al. Local administration of liposomal-based Plekhf1 gene therapy attenuates pulmonary fibrosis by modulating macrophage polarization. Sci. China Life Sci. 66, 2571–2586 (2023). https://doi.org/10.1007/s11427-022-2314-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2314-8

Navigation