Skip to main content
Log in

Repair of dysfunctional bone marrow endothelial cells alleviates aplastic anemia

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Aplastic anemia (AA) is a life-threatening disease characterized by bone marrow (BM) failure and pancytopenia. As an important component of the BM microenvironment, endothelial cells (ECs) play a crucial role in supporting hematopoiesis and regulating immunity. However, whether impaired BM ECs are involved in the occurrence of AA and whether repairing BM ECs could improve hematopoiesis and immune status in AA remain unknown. In this study, a classical AA mouse model and VE-cadherin blocking antibody that could antagonize the function of ECs were used to validate the role of BM ECs in the occurrence of AA. N-acetyl-L-cysteine (NAC, a reactive oxygen species scavenger) or exogenous EC infusion was administered to AA mice. Furthermore, the frequency and functions of BM ECs from AA patients and healthy donors were evaluated. BM ECs from AA patients were treated with NAC in vitro, and then the functions of BM ECs were evaluated. We found that BM ECs were significantly decreased and damaged in AA mice. Hematopoietic failure and immune imbalance became more severe when the function of BM ECs was antagonized, whereas NAC or EC infusion improved hematopoietic and immunological status by repairing BM ECs in AA mice. Consistently, BM ECs in AA patients were decreased and dysfunctional. Furthermore, dysfunctional BM ECs in AA patients led to their impaired ability to support hematopoiesis and dysregulate T cell differentiation toward proinflammatory phenotypes, which could be repaired by NAC in vitro. The reactive oxygen species pathway was activated, and hematopoiesis- and immune-related signaling pathways were enriched in BM ECs of AA patients. In conclusion, our data indicate that dysfunctional BM ECs with impaired hematopoiesis-supporting and immunomodulatory abilities are involved in the occurrence of AA, suggesting that repairing dysfunctional BM ECs may be a potential therapeutic approach for AA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avecilla, S.T., Hattori, K., Heissig, B., Tejada, R., Liao, F., Shido, K., Jin, D.K., Dias, S., Zhang, F., Hartman, T.E., et al. (2004). Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10, 64–71.

    Article  CAS  PubMed  Google Scholar 

  • Bautch, V.L. (2011). Stem cells and the vasculature. Nat Med 17, 1437–1443.

    Article  CAS  PubMed  Google Scholar 

  • Bedke, T., Pretsch, L., Karakhanova, S., Enk, A.H., and Mahnke, K. (2010). Endothelial cells augment the suppressive function of CD4+CD25+Foxp3+ regulatory T cells: involvement of programmed death-1 and IL-10. J Immunol 184, 5562–5570.

    Article  CAS  PubMed  Google Scholar 

  • Bloom, M.L., Wolk, A.G., Simon-Stoos, K.L., Bard, J.S., Chen, J., and Young, N.S. (2004). A mouse model of lymphocyte infusion-induced bone marrow failure. Exp Hematol 32, 1163–1172.

    Article  CAS  PubMed  Google Scholar 

  • Butler, J.M., Nolan, D.J., Vertes, E.L., Varnum-Finney, B., Kobayashi, H., Hooper, A.T., Seandel, M., Shido, K., White, I.A., Kobayashi, M., et al. (2010). Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells. Cell Stem Cell 6, 251–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvi, L.M., and Link, D.C. (2015). The hematopoietic stem cell niche in homeostasis and disease. Blood 126, 2443–2451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, X.N., Kong, Y., Song, Y., Shi, M.M., Zhao, H.Y., Wen, Q., Lyu, Z.S., Duan, C.W., Wang, Y., Xu, L.P., et al. (2018). Impairment of bone marrow endothelial progenitor cells in acute graft-versus-host disease patients after allotransplant. Br J Haematol 182, 870–886.

    Article  CAS  PubMed  Google Scholar 

  • Certo, M., Elkafrawy, H., Pucino, V., Cucchi, D., Cheung, K.C.P., and Mauro, C. (2021). Endothelial cell and T-cell crosstalk: targeting metabolism as a therapeutic approach in chronic inflammation. Br J Pharmacol 178, 2041–2059.

    Article  CAS  PubMed  Google Scholar 

  • Chute, J.P., Muramoto, G.G., Salter, A.B., Meadows, S.K., Rickman, D.W., Chen, B., Himburg, H.A., and Chao, N.J. (2007). Transplantation of vascular endothelial cells mediates the hematopoietic recovery and survival of lethally irradiated mice. Blood 109, 2365–2372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Latour, R.P., Visconte, V., Takaku, T., Wu, C., Erie, A.J., Sarcon, A.K., Desierto, M.J., Scheinberg, P., Keyvanfar, K., Nunez, O., et al. (2010). Th17 immune responses contribute to the pathophysiology of aplastic anemia. Blood 116, 4175–4184.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis, S.L., Grassinger, J., Jones, A., Borg, J., Camenisch, T., Haylock, D., Bertoncello, I., and Nilsson, S.K. (2011). The relationship between bone, hemopoietic stem cells, and vasculature. Blood 118, 1516–1524.

    Article  CAS  PubMed  Google Scholar 

  • Feng, X., Lin, Z., Sun, W., Hollinger, M.K., Desierto, M.J., Keyvanfar, K., Malide, D., Muranski, P., Chen, J., and Young, N.S. (2017). Rapamycin is highly effective in murine models of immune-mediated bone marrow failure. Haematologica 102, 1691–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Füreder, W., Krauth, M.T., Sperr, W.R., Sonneck, K., Simonitsch-Klupp, I., Müllauer, L., Willmann, M., Horny, H.P., and Valent, P. (2006). Evaluation of angiogenesis and vascular endothelial growth factor expression in the bone marrow of patients with aplastic anemia. Am J Pathol 168, 123–130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giannakoulas, N.C., Karakantza, M., Theodorou, G.L., Pagoni, M., Galanopoulos, A., Kakagianni, T., Kouraklis-Symeonidis, A., Matsouka, P., Maniatis, A., and Zoumbos, N.C. (2004). Clinical relevance of balance between type 1 and type 2 immune responses of lymphocyte subpopulations in aplastic anaemia patients. Br J Haematol 124, 97–105.

    Article  PubMed  Google Scholar 

  • Halkes, C.J., Veelken, H., and Falkenburg, J.H. (2011). Horse versus rabbit antithymocyte globulin in aplastic anemia. N Engl J Med 365, 1842–1843.

    Article  CAS  PubMed  Google Scholar 

  • Hooper, A.T., Butler, J.M., Nolan, D.J., Kranz, A., Iida, K., Kobayashi, M., Kopp, H.G., Shido, K., Petit, I., Yanger, K., et al. (2009). Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, L., Cheng, H., Gao, Y., Shi, M., Liu, Y., Hu, Z., Xu, J., Qiu, L., Yuan, W., Leung, A.Y.H., et al. (2014). Antioxidant N-acetyl-L-cysteine increases engraftment of human hematopoietic stem cells in immunedeficient mice. Blood 124, e45–e48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima, S., Frickhofen, N., Deeg, H.J., Okamoto, S., Marsh, J., Marsh, J., Bacigalupo, A., and Mizoguchi, H. (2005). Aplastic anemia. Int J Hematol 82, 408–411.

    Article  PubMed  Google Scholar 

  • Kong, Y., Cao, X.N., Zhang, X.H., Shi, M.M., Lai, Y.Y., Wang, Y., Xu, L.P., Chang, Y.J., and Huang, X.J. (2018a). Atorvastatin enhances bone marrow endothelial cell function in corticosteroid-resistant immune thrombocytopenia patients. Blood 131, 1219–1233.

    Article  CAS  PubMed  Google Scholar 

  • Kong, Y., Shi, M.M., Zhang, Y.Y., Cao, X.N., Wang, Y., Zhang, X.H., Xu, L.P., and Huang, X.J. (2018b). N-acetyl-L-cysteine improves bone marrow endothelial progenitor cells in prolonged isolated thrombocytopenia patients post allogeneic hematopoietic stem cell transplantation. Am J Hematol 93, 931–942.

    Article  CAS  PubMed  Google Scholar 

  • Kong, Y., Wang, Y.T., Cao, X.N., Song, Y., Chen, Y.H., Sun, Y.Q., Wang, Y., Zhang, X.H., Xu, L.P., and Huang, X.J. (2017). Aberrant T cell responses in the bone marrow microenvironment of patients with poor graft function after allogeneic hematopoietic stem cell transplantation. J Transl Med 15, 57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong, Y., Wang, Y., Zhang, Y.Y., Shi, M.M., Mo, X.D., Sun, Y.Q., Chang, Y.J., Xu, L.P., Zhang, X.H., Liu, K.Y., et al. (2019). Prophylactic oral NAC reduced poor hematopoietic reconstitution by improving endothelial cells after haploidentical transplantation. Blood Adv 3, 1303–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kordasti, S., Marsh, J., Al-Khan, S., Jiang, J., Smith, A., Mohamedali, A., Abellan, P.P., Veen, C., Costantini, B., Kulasekararaj, A.G., et al. (2012). Functional characterization of CD4+ T cells in aplastic anemia. Blood 119, 2033–2043.

    Article  CAS  PubMed  Google Scholar 

  • Krupnick, A.S., Gelman, A.E., Barchet, W., Richardson, S., Kreisel, F.H., Turka, L.A., Colonna, M., Patterson, G.A., and Kreisel, D. (2005). Murine vascular endothelium activates and induces the generation of allogeneic CD4+25+Foxp3+ regulatory T cells. J Immunol 175, 6265–6270.

    Article  CAS  PubMed  Google Scholar 

  • Lim, W.C., Olding, M., Healy, E., and Millar, T.M. (2018). Human endothelial cells modulate CD4+ T cell populations and enhance regulatory T cell suppressive capacity. Front Immunol 9, 565.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv, M., Gorin, N.C., and Huang, X.J. (2022). A vision for the future of allogeneic hematopoietic stem cell transplantation in the next decade. Sci Bull 67, 1921–1924.

    Article  Google Scholar 

  • Lyu, Z.S., Cao, X.N., Wen, Q., Mo, X.D., Zhao, H.Y., Chen, Y.H., Wang, Y., Chang, Y.J., Xu, L.P., Zhang, X.H., et al. (2020). Autophagy in endothelial cells regulates their haematopoiesis-supporting ability. Ebiomedicine 53, 102677.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyu, Z.S., Tang, S.Q., Xing, T., Zhou, Y., Lv, M., Fu, H.X., Wang, Y., Xu, L.P., Zhang, X.H., Lee, H.Y., et al. (2022). The glycolytic enzyme PFKFB3 determines bone marrow endothelial progenitor cell damage after chemotherapy and irradiation. Haematologica 107, 2365–2380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCabe, A., Smith, J.N.P., Costello, A., Maloney, J., Katikaneni, D., and MacNamara, K.C. (2018). Hematopoietic stem cell loss and hematopoietic failure in severe aplastic anemia is driven by macrophages and aberrant podoplanin expression. Haematologica 103, 1451–1461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medinger, M., Drexler, B., Lengerke, C., and Passweg, J. (2018). Pathogenesis of acquired aplastic anemia and the role of the bone marrow microenvironment. Front Oncol 8, 587.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michelozzi, I.M., Pievani, A., Pagni, F., Antolini, L., Verna, M., Corti, P., Rovelli, A., Riminucci, M., Dazzi, F., Biondi, A., et al. (2017). Human aplastic anaemia-derived mesenchymal stromal cells form functional haematopoietic stem cell niche in vivo. Br J Haematol 179, 669–673.

    Article  PubMed  Google Scholar 

  • Naserian, S., Abdelgawad, M.E., Afshar Bakshloo, M., Ha, G., Arouche, N., Cohen, J.L., Salomon, B.L., and Uzan, G. (2020). The TNF/TNFR2 signaling pathway is a key regulatory factor in endothelial progenitor cell immunosuppressive effect. Cell Commun Signal 18, 94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nouri Barkestani, M., Shamdani, S., Afshar Bakshloo, M., Arouche, N., Bambai, B., Uzan, G., and Naserian, S. (2021). TNFα priming through its interaction with TNFR2 enhances endothelial progenitor cell immunosuppressive effect: new hope for their widespread clinical application. Cell Commun Signal 19, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodig, N., Ryan, T., Allen, J., Pang, H., Grabie, N., Chernova, T., Greenfield, E., Liang, S.C., Sharpe, A.., Lichtman, A.., et al. (2003). Endothelial expression of PD-L1 and PD-L2 down-regulates CD8+ T cell activation and cytolysis. Eur J Immunol 33, 3117–3126.

    Article  CAS  PubMed  Google Scholar 

  • Salter, A.B., Meadows, S.K., Muramoto, G.G., Himburg, H., Doan, P., Daher, P., Russell, L., Chen, B., Chao, N.J., and Chute, J.P. (2009). Endothelial progenitor cell infusion induces hematopoietic stem cell reconstitution in vivo. Blood 113, 2104–2107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scopes, J., Ismail, M., Marks, K.J., Rutherford, T.R., Draycott, G.S., Pocock, C., Gordon-Smith, E.C., and Gibson, F.M. (2001). Correction of stromal cell defect after bone marrow transplantation in aplastic anaemia. Br J Haematol 115, 642–652.

    Article  CAS  PubMed  Google Scholar 

  • Shi, M.M., Kong, Y., Song, Y., Sun, Y.Q., Wang, Y., Zhang, X.H., Xu, L.P., Liu, K.Y., and Huang, X.J. (2016). Atorvastatin enhances endothelial cell function in posttransplant poor graft function. Blood 128, 2988–2999.

    Article  CAS  PubMed  Google Scholar 

  • Solomou, E.E., Keyvanfar, K., and Young, N.S. (2006). T-bet, a Th1 transcription factor, is up-regulated in T cells from patients with aplastic anemia. Blood 107, 3983–3991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomou, E.E., Rezvani, K., Mielke, S., Malide, D., Keyvanfar, K., Visconte, V., Kajigaya, S., Barrett, A.J., and Young, N.S. (2007). Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic anemia. Blood 110, 1603–1606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, Y., Shi, M.M., Zhang, Y.Y., Mo, X.D., Wang, Y., Zhang, X.H., Xu, L. P., Huang, X.J., and Kong, Y. (2017). Abnormalities of the bone marrow immune microenvironment in patients with prolonged isolated thrombocytopenia after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 23, 906–912.

    Article  PubMed  Google Scholar 

  • Sturtzel, C. (2017). Endothelial cells. Adv Exp Med Biol 1003, 71–91.

    Article  CAS  PubMed  Google Scholar 

  • Sun, W., Wu, Z., Lin, Z., Hollinger, M., Chen, J., Feng, X., and Young, N.S. (2018). Macrophage TNF-α licenses donor T cells in murine bone marrow failure and can be implicated in human aplastic anemia. Blood 132, 2730–2743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, S.Q., Yao, W.L., Wang, Y.Z., Zhang, Y.Y., Zhao, H.Y., Wen, Q., Wang, Y., Xu, L.P., Zhang, X.H., Huang, X.J., et al. (2021). Improved function and balance in T cell modulation by endothelial cells in young people. Clin Exp Immunol 206, 196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tichelli, A., Schrezenmeier, H., Socié, G., Marsh, J., Bacigalupo, A., Dührsen, U., Franzke, A., Hallek, M., Thiel, E., Wilhelm, M., et al. (2011). A randomized controlled study in patients with newly diagnosed severe aplastic anemia receiving antithymocyte globulin (ATG), cyclosporine, with or without G-CSF: a study of the SAA working party of the european group for blood and marrow transplantation. Blood 117, 4434–4441.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Kong, Y., Zhao, H.Y., Zhang, Y.Y., Wang, Y.Z., Xu, L.P., Zhang, X.H., Liu, K.Y., and Huang, X.J. (2022). Prophylactic NAC promoted hematopoietic reconstitution by improving endothelial cells after haploidentical HSCT: a phase 3, open-label randomized trial. BMC Med 20, 140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y.T., Kong, Y., Song, Y., Han, W., Zhang, Y.Y., Zhang, X.H., Chang, Y.J., Jiang, Z.F., and Huang, X.J. (2016). Increased type 1 immune response in the bone marrow immune microenvironment of patients with poor graft function after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 22, 1376–1382.

    Article  CAS  PubMed  Google Scholar 

  • Wen, Q., Xu, Z.L., Wang, Y., Lv, M., Song, Y., Lyv, Z.S., Xing, T., Xu, L.P., Zhang, X.H., Huang, X.J., et al. (2022). Glucocorticoid and glycolysis inhibitors cooperatively abrogate acute graft-versus-host disease. Sci China Life Sci 66, 528–544.

    Article  PubMed  Google Scholar 

  • Wu, L., Mo, W., Zhang, Y., Zhou, M., Li, Y., Zhou, R., Xu, S., Pan, S., Deng, H., Mao, P., et al. (2017). Vascular and perivascular niches, but not the osteoblastic niche, are numerically restored following allogeneic hematopoietic stem cell transplantation in patients with aplastic anemia. Int J Hematol 106, 71–81.

    Article  PubMed  Google Scholar 

  • Xing, T., Lyu, Z.S., Duan, C.W., Zhao, H.Y., Tang, S.Q., Wen, Q., Zhang, Y.Y., Lv, M., Wang, Y., Xu, L.P., et al. (2022). Dysfunctional bone marrow endothelial progenitor cells are involved in patients with myelodysplastic syndromes. J Transl Med 20, 144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, L., Fu, B., Wang, W., Xu, Y., Wu, D., Wang, S., Liu, Q., Xia, L., Gao, S., Jiang, M., et al. (2020). Haploidentical hematopoietic cell transplantation for severe acquired aplastic anemia: a case-control study of post-transplant cyclophosphamide included regimen vs. anti-thymocyte globulin & colony-stimulating factor-based regimen. Sci China Life Sci 63, 940–942.

    Article  PubMed  Google Scholar 

  • Xu, L. P., Wang, S. Q., Ma, Y. R., Gao, S. J., Cheng, Y. F., Zhang, Y. Y., Mo, W.J., Mo, X.D., Zhang, Y.P., Yan, C.H., et al. (2019). Who is the best haploidentical donor for acquired severe aplastic anemia? Experience from a multicenter study. J Hematol Oncol 12, 87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, L.P., Xu, Z.L., Wang, S.Q., Wu, D.P., Gao, S.J., Yang, J.M., Xia, L.H., Liu, Q.F., Jiang, M., Bai, H., et al. (2022). Long-term follow-up of haploidentical transplantation in relapsed/refractory severe aplastic anemia: a multicenter prospective study. Sci Bull 67, 963–970.

    Article  Google Scholar 

  • Yan, Z., Zeng, L., Li, Z., Zhang, H., Chen, W., Jia, L., Chen, C., Cheng, H., Cao, J., and Xu, K. (2013). Bone marrow-derived endothelial progenitor cells promote hematopoietic reconstitution after hematopoietic stem cell transplantation. Transplant Proc 45, 427–433.

    Article  CAS  PubMed  Google Scholar 

  • Yao, Y., Li, F., Huang, J., Jin, J., and Wang, H. (2021). Leukemia stem cell-bone marrow microenvironment interplay in acute myeloid leukemia development. Exp Hematol Oncol 10, 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, N.S. (2013). Current concepts in the pathophysiology and treatment of aplastic anemia. Hematology 2013(1), 76–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Young, N.S. (2018). Aplastic anemia. N Engl J Med 379, 1643–1656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, S., Sun, G., Zhang, Y., Dong, F., Cheng, H., and Cheng, T. (2021). Understanding the “smart” features of hematopoietic stem cells and beyond. Sci China Life Sci 64, 2030–2044.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Chen, J., Han, M.Z., Huang, H., Jiang, E., Jiang, M., Lai, Y., Liu, D., Liu, Q.F., Liu, T., et al. (2021). The consensus from The Chinese Society of Hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update. J Hematol Oncol 14, 145.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, H.Y., Zhang, Y.Y., Xing, T., Tang, S.Q., Wen, Q., Lyu, Z.S., Lv, M., Wang, Y., Xu, L.P., Zhang, X.H., et al. (2021). M2 macrophages, but not M1 macrophages, support megakaryopoiesis by upregulating PI3K-AKT pathway activity. Sig Transduct Target Ther 6, 234.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA1100900, 2022YFA1103300), the National Natural Science Foundation of China (82070188, 82270229, 81930004), Beijing Natural Science Foundation (7232181), and Peking University People’s Hospital Scientific Research Development Funds (RDGS2022-04). The authors thank all of the core facilities at the Peking University Institute of Hematology for patient care and sample collection. We appreciate Professor Neal S Young and his team provided generous instruction in establishing the AA mouse model. The authors thank Cai-Wen Duan from Shanghai Jiao Tong University School of Medicine for excellent assistance with the immunofluorescent staining, and thank Wei-Li Yao for excellent assistance with drawing the graphical abstract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Kong.

Ethics declarations

The author(s) declare that they have no conflict of interest. The study protocol was approved by the ethics committee review board of Peking University People’s Hospital, and written informed consent was obtained from the subjects in accordance with the Declaration of Helsinki.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, SQ., Xing, T., Lyu, ZS. et al. Repair of dysfunctional bone marrow endothelial cells alleviates aplastic anemia. Sci. China Life Sci. 66, 2553–2570 (2023). https://doi.org/10.1007/s11427-022-2310-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2310-x

Navigation