Skip to main content
Log in

A novel MYCN-YTHDF1 cascade contributes to retinoblastoma tumor growth by eliciting m6A -dependent activation of multiple oncogenes

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Retinoblastoma, the most prevalent primary intraocular tumor in children, leads to vision impairment, disability and even death. In addition to RB1 inactivation, MYCN activation has been documented as another common oncogenic alteration in retinoblastoma and represents one of the high-risk molecular subtypes of retinoblastoma. However, how MYCN contributes to the progression of retinoblastoma is still incompletely understood. Here, we report that MYCN upregulates YTHDF1, which encodes one of the reader proteins for N6-methyladenosine (m6A) RNA modification, in retinoblastoma. We further found that this MYCN-upregulated m6A reader functions to promote retinoblastoma cell proliferation and tumor growth in an m6A binding-dependent manner. Mechanistically, YTHDF1 promotes the expression of multiple oncogenes by binding to their mRNAs and enhancing mRNA stability and translation in retinoblastoma cells. Taken together, our findings reveal a novel MYCN-YTHDF1 regulatory cascade in controlling retinoblastoma cell proliferation and tumor growth, pinpointing an unprecedented mechanism for MYCN amplification and/or activation to promote retinoblastoma progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

RNA-seq of retinoblastoma samples, YTHDF1-RIP-seq, MYCN CUT&Tag and m6A-meRIP-seq have been deposited in the National Omics Data Encyclopedia database (NODE, https://www.biosino.org/node/index, Project number: OEP000103 and OEP003732). All relevant data are available from the authors upon request.

References

  • Ambrosini, G., Pratilas, C.A., Qin, L.X., Tadi, M., Surriga, O., Carvajal, R. D., and Schwartz, G.K. (2012). Identification of unique MEK-dependent genes in GNAQ mutant uveal melanoma involved in cell growth, tumor cell invasion, and MEK resistance. Clin Cancer Res 18, 3552–3561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An, Y., and Duan, H. (2022). The role of m6A RNA methylation in cancer metabolism. Mol Cancer 21, 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asencio-López, L., Torres-Ojeda, A.A., Isaac-Otero, G., and Leal-Leal, C. A. (2015). Treating retinoblastoma in the first year of life in a national tertiary paediatric hospital in Mexico. Acta Paediatr 104, e384–e387.

    Article  PubMed  Google Scholar 

  • Barbieri, I., Tzelepis, K., Pandolfini, L., Shi, J., Millán-Zambrano, G., Robson, S.C., Aspris, D., Migliori, V., Bannister, A.J., Han, N., et al. (2017). Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552, 126–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bawankar, P., Lence, T., Paolantoni, C., Haussmann, I.U., Kazlauskiene, M., Jacob, D., Heidelberger, J.B., Richter, F.M., Nallasivan, M.P., Morin, V., et al. (2021). Hakai is required for stabilization of core components of the m6A mRNA methylation machinery. Nat Commun 12, 3778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltran, H. (2014). The N-myc oncogene: maximizing its targets, regulation, and therapeutic potential. Mol Cancer Res 12, 815–822.

    Article  CAS  PubMed  Google Scholar 

  • Bokar, J.A., Shambaugh, M.E., Polayes, D., Matera, A.G., and Rottman, F. M. (1997). Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3, 1233–1247.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bremner, R., and Zacksenhaus, E. (2010). Cyclins, Cdks, E2f, Skp2, and more at the first international RB Tumor Suppressor Meeting. Cancer Res 70, 6114–6118.

    Article  CAS  PubMed  Google Scholar 

  • Canturk, S., Qaddoumi, I., Khetan, V., Ma, Z., Furmanchuk, A., Antoneli, C.B.G., Sultan, I., Kebudi, R., Sharma, T., Rodriguez-Galindo, C., et al. (2010). Survival of retinoblastoma in less-developed countries impact of socioeconomic and health-related indicators. Br J Ophthalmol 94, 1432–1436.

    Article  CAS  PubMed  Google Scholar 

  • Chai, P., Jia, R., Jia, R., Pan, H., Wang, S., Ni, H., Wang, H., Zhou, C., Shi, Y., Ge, S., et al. (2018). Dynamic chromosomal tuning of a novel GAU1 lncing driver at chr12p13.32 accelerates tumorigenesis. Nucleic Acids Res–46, 6041–6056.

    Google Scholar 

  • Chang, G., Shi, L., Ye, Y., Shi, H., Zeng, L., Tiwary, S., Huse, J.T., Huo, L., Ma, L., Ma, Y., et al. (2020). YTHDF3 induces the translation of m6A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell 38, 857–871.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellappan, S.P., Hiebert, S., Mudryj, M., Horowitz, J.M., and Nevins, J.R. (1991). The E2F transcription factor is a cellular target for the RB protein. Cell 65, 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Miao, L., Lin, H., Zhuo, Z., and He, J. (2022). The role of m6A modification in pediatric cancer. Biochim Biophys Acta 1877, 188691.

    CAS  Google Scholar 

  • Cheng, J., Xu, L., Deng, L., Xue, L., Meng, Q., Wei, F., and Wang, J. (2020). RNA N6-methyladenosine modification is required for miR-98/MYCN axis-mediated inhibition of neuroblastoma progression. Sci Rep 10, 13624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Currais, A., Prior, M., Dargusch, R., Armando, A., Ehren, J., Schubert, D., Quehenberger, O., and Maher, P. (2014). Modulation of p25 and inflammatory pathways by fisetin maintains cognitive function in Alzheimer’s disease transgenic mice. Aging Cell 13, 379–390.

    Article  CAS  PubMed  Google Scholar 

  • de Rooij, J.D.E., Masetti, R., van den Heuvel-Eibrink, M.M., Cayuela, J. M., Trka, J., Reinhardt, D., Rasche, M., Sonneveld, E., Alonzo, T.A., Fornerod, M., et al. (2016). Recurrent abnormalities can be used for risk group stratification in pediatric AMKL: a retrospective intergroup study. Blood 127, 3424–3430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demelash, A., Rudrabhatla, P., Pant, H.C., Wang, X., Amin, N.D., McWhite, C.D., Naizhen, X., and Linnoila, R.I. (2012). Achaete-scute homologue-1 (ASH1) stimulates migration of lung cancer cells through Cdk5/p35 pathway. Mol Biol Cell 23, 2856–2866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimaras, H., Kimani, K., Dimba, E.A., Gronsdahl, P., White, A., Chan, H. S., and Gallie, B.L. (2012). Retinoblastoma. Lancet 379, 1436–1446.

    Article  PubMed  Google Scholar 

  • Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., et al. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206.

    Article  CAS  PubMed  Google Scholar 

  • Drerup, J.M., Hayashi, K., Cui, H., Mettlach, G.L., Long, M.A., Marvin, M., Sun, X., Goldberg, M.S., Lutter, M., and Bibb, J.A. (2010). Attention-deficit/hyperactivity phenotype in mice lacking the cyclin-dependent kinase 5 cofactor p35. Biol Psychiatry 68, 1163–1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field, M.G., Kuznetsoff, J.N., Zhang, M.G., Dollar, J.J., Durante, M.A., Sayegh, Y., Decatur, C.L., Kurtenbach, S., Pelaez, D., and Harbour, J.W. (2022). RB1 loss triggers dependence on ESRRG in retinoblastoma. Sci Adv 8, eabm8466.

    Article  Google Scholar 

  • Frau, M., Tomasi, M.L., Simile, M.M., Demartis, M.I., Salis, F., Latte, G., Calvisi, D.F., Seddaiu, M.A., Daino, L., Feo, C.F., et al. (2012). Role of transcriptional and posttranscriptional regulation of methionine adenosyltransferases in liver cancer progression. Hepatology 56, 165–175.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Y., Dominissini, D., Rechavi, G., and He, C. (2014). Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 15, 293–306.

    Article  CAS  PubMed  Google Scholar 

  • Guan, Q., Lin, H., Miao, L., Guo, H., Chen, Y., Zhuo, Z., and He, J. (2022). Functions, mechanisms, and therapeutic implications of METTL14 in human cancer. J Hematol Oncol 15, 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H., Weng, H., and Chen, J. (2020). m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell 37, 270–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irwin, M.S., Naranjo, A., Zhang, F.F., Cohn, S.L., London, W.B., Gastier-Foster, J.M., Ramirez, N.C., Pfau, R., Reshmi, S., Wagner, E., et al. (2021). Revised neuroblastoma risk classification system: a report from the Children’s Oncology Group. J Clin Oncol 39, 3229–3241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., Yi, C., Lindahl, T., Pan, T., Yang, Y.G., et al. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol 7, 885–887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, R., Chai, P., Wang, S., Sun, B., Xu, Y., Yang, Y., Ge, S., Jia, R., Yang, Y.G., and Fan, X. (2019). m6A modification suppresses ocular melanoma through modulating HINT2 mRNA translation. Mol Cancer 18, 161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung, M.S., Russell, A.J., Liu, B., George, J., Liu, P.Y., Liu, T., DeFazio, A., Bowtell, D.D.L., Oberthuer, A., London, W.B., et al. (2017). A Myc activity signature predicts poor clinical outcomes in Myc-associated cancers. Cancer Res 77, 971–981.

    Article  CAS  PubMed  Google Scholar 

  • Kalev, P., Hyer, M.L., Gross, S., Konteatis, Z., Chen, C.C., Fletcher, M., Lein, M., Aguado-Fraile, E., Frank, V., Barnett, A., et al. (2021). MAT2A inhibition blocks the growth of MTAP-deleted cancer cells by reducing PRMT5-dependent mRNA splicing and inducing DNA damage. Cancer Cell 39, 209–224.e11.

    Article  CAS  PubMed  Google Scholar 

  • Ke, S., Alemu, E.A., Mertens, C., Gantman, E.C., Fak, J.J., Mele, A., Haripal, B., Zucker-Scharff, I., Moore, M.J., Park, C.Y., et al. (2015). A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev 29, 2037–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kivelä, T. (2009). The epidemiological challenge of the most frequent eye cancer: retinoblastoma, an issue of birth and death. Br J Ophthalmol 93, 1129–1131.

    Article  PubMed  Google Scholar 

  • Kooi, I.E., Mol, B.M., Moll, A.C., van der Valk, P., de Jong, M.C., de Graaf, P., van Mil, S.E., Schouten-van Meeteren, A.Y.N., Meijers-Heijboer, H., Kaspers, G.L., et al. (2015). Loss of photoreceptorness and gain of genomic alterations in retinoblastoma reveal tumor progression. Ebiomedicine 2, 660–670.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, J., Xie, H., Ying, Y., Chen, H., Yan, H., He, L., Xu, M., Xu, X., Liang, Z., Liu, B., et al. (2020a). YTHDF2 mediates the mRNA degradation of the tumor suppressors to induce AKT phosphorylation in N6-methyladenosine-dependent way in prostate cancer. Mol Cancer 19, 152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Q., Ni, Y., Zhang, L., Jiang, R., Xu, J., Yang, H., Hu, Y., Qiu, J., Pu, L., Tang, J., et al. (2021a). HIF-1α-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Sig Transduct Target Ther 6, 76.

    Article  CAS  Google Scholar 

  • Li, W., Hao, Y., Zhang, X., Xu, S., and Pang, D. (2022). Targeting RNA N6-methyladenosine modification: a precise weapon in overcoming tumor immune escape. Mol Cancer 21, 176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Liang, Q.X., Lin, J.R., Peng, J., Yang, J.H., Yi, C., Yu, Y., Zhang, Q. C., and Zhou, K.R. (2020b). Epitranscriptomic technologies and analyses. Sci China Life Sci 63, 501–515.

    Article  PubMed  Google Scholar 

  • Li, Y., Gu, J., Xu, F., Zhu, Q., Chen, Y., Ge, D., and Lu, C. (2021b). Molecular characterization, biological function, tumor microenvironment association and clinical significance of m6A regulators in lung adenocarcinoma. Brief Bioinform 22.

  • Liao, S., Sun, H., and Xu, C. (2018). YTH domain: a family of N6-methyladenosine (m6A) readers. Genomics Proteomics Bioinf 16, 99–107.

    Article  CAS  Google Scholar 

  • Lin, Z., Niu, Y., Wan, A., Chen, D., Liang, H., Chen, X., Sun, L., Zhan, S., Chen, L., Cheng, C., et al. (2020). RNA m6A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO J 39, e103181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Wang, H., Wei, Z., Zhang, S., Hua, G., Zhang, S.W., Zhang, L., Gao, S.J., Meng, J., Chen, X., et al. (2018). MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome. Nucleic Acids Res 46, D281–D287.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Zhang, X., Zhao, Z., Zhu, H., Li, D., Yang, Y., Zhao, W., Zhang, F., Wang, Y., Zhu, L., et al. (2022). CNST is characteristic of leukemia stem cells and is associated with poor prognosis in AML. Front Pharmacol 13, 888243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, J., Ottaviani, D., Sefta, M., Desbrousses, C., Chapeaublanc, E., Aschero, R., Sirab, N., Lubieniecki, F., Lamas, G., Tonon, L., et al. (2021a). A high-risk retinoblastoma subtype with stemness features, dedifferentiated cone states and neuronal/ganglion cell gene expression. Nat Commun 12, 5578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, T., Wei, Q., Jin, J., Luo, Q., Liu, Y., Yang, Y., Cheng, C., Li, L., Pi, J., Si, Y., et al. (2020). The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Res 48, 3816–3831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, T., Zheng, X., Wang, C., Wang, C., Jiang, S., Li, B., Chen, P., Xu, W., Zheng, H., Yang, R., et al. (2021b). The m6A “reader” YTHDF1 promotes osteogenesis of bone marrow mesenchymal stem cells through translational control of ZNF839. Cell Death Dis 12, 1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, Y., Zhou, C., He, F., Fan, J., Wen, X., Ding, Y., Han, Y., Ding, J., Jin, M., Liu, Z., et al. (2022). Contemporary update of retinoblastoma in China: three-decade changes in epidemiology, clinical features, treatments, and outcomes. Am J Ophthalmol 236, 193–203.

    Article  PubMed  Google Scholar 

  • Meyer, K.D., Patil, D.P., Zhou, J., Zinoviev, A., Skabkin, M.A., Elemento, O., Pestova, T.V., Qian, S.B., and Jaffrey, S.R. (2015). 5′ UTR m6A promotes cap-independent translation. Cell 163, 999–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., and Jaffrey, S.R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149, 1635–1646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oser, M.G., Fonseca, R., Chakraborty, A.A., Brough, R., Spektor, A., Jennings, R.B., Flaifel, A., Novak, J.S., Gulati, A., Buss, E., et al. (2019). Cells lacking the RB1 tumor suppressor gene are hyperdependent on aurora B kinase for survival. Cancer Discov 9, 230–247.

    Article  CAS  PubMed  Google Scholar 

  • Paris, J., Morgan, M., Campos, J., Spencer, G.J., Shmakova, A., Ivanova, I., Mapperley, C., Lawson, H., Wotherspoon, D.A., Sepulveda, C., et al. (2019). Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell 25, 137–148.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patil, D.P., Pickering, B.F., and Jaffrey, S.R. (2018). Reading m6A in the transcriptome: m6A-binding proteins. Trends Cell Biol 28, 113–127.

    Article  CAS  PubMed  Google Scholar 

  • Ping, X.L., Sun, B.F., Wang, L., Xiao, W., Yang, X., Wang, W.J., Adhikari, S., Shi, Y., Lv, Y., Chen, Y.S., et al. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res 24, 177–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozo, K., and Bibb, J.A. (2016). The emerging role of Cdk5 in cancer. Trends Cancer 2, 606–618.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin, X.Y., Suzuki, H., Honda, M., Okada, H., Kaneko, S., Inoue, I., Ebisui, E., Hashimoto, K., Carninci, P., Kanki, K., et al. (2018). Prevention of hepatocellular carcinoma by targeting MYCN-positive liver cancer stem cells with acyclic retinoid. Proc Natl Acad Sci USA 115, 4969–4974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rushlow, D.E., Mol, B.M., Kennett, J.Y., Yee, S., Pajovic, S., Thériault, B. L., Prigoda-Lee, N.L., Spencer, C., Dimaras, H., Corson, T.W., et al. (2013). Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol 14, 327–334.

    Article  CAS  PubMed  Google Scholar 

  • Saw, P.E., Xu, X., Chen, J., and Song, E.W. (2021). Non-coding RNAs: the new central dogma of cancer biology. Sci China Life Sci 64, 22–50.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, S., Mumbach, M.R., Jovanovic, M., Wang, T., Maciag, K., Bushkin, G.G., Mertins, P., Ter-Ovanesyan, D., Habib, N., Cacchiarelli, D., et al. (2014). Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Rep 8, 284–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, M., Li, Y., Wang, Y., Shao, J., Zhang, F., Yin, G., Chen, A., Zhang, Z., and Zheng, S. (2021). N6-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biol 47, 102151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Y., Fan, S., Wu, M., Zuo, Z., Li, X., Jiang, L., Shen, Q., Xu, P., Zeng, L., Zhou, Y., et al. (2019). YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun 10, 4892.

    Article  PubMed  PubMed Central  Google Scholar 

  • Strock, C.J., Park, J.I., Nakakura, E.K., Bova, G.S., Isaacs, J.T., Ball, D.W., and Nelkin, B.D. (2006). Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells. Cancer Res 66, 7509–7515.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Gao, S., Zeng, Y., Zhu, L., Mo, Y., Wong, C.C., Bao, Y., Su, P., Zhai, J., Wang, L., et al. (2022). N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer. Gastroenterology 162, 1183–1196.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., Kong, S., Tao, M., and Ju, S. (2020a). The potential role of RNA N6-methyladenosine in cancer progression. Mol Cancer 19, 88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., Fu, Y., Parisien, M., Dai, Q., Jia, G., et al. (2014). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120.

    Article  PubMed  Google Scholar 

  • Wang, X., Zhao, B.S., Roundtree, I.A., Lu, Z., Han, D., Ma, H., Weng, X., Chen, K., Shi, H., and He, C. (2015). N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Bao, Y., Zhang, S., and Wang, Z. (2020b). Splicing dysregulation in cancer: from mechanistic understanding to a new class of therapeutic targets. Sci China Life Sci 63, 469–484.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, J., He, J., Zhu, J., Pan, J., Liao, W., Ye, H., Wang, H., Song, Y., Du, Y., Cui, B., et al. (2022). Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell 82, 1660–1677.e10.

    Article  CAS  PubMed  Google Scholar 

  • Xu, C., Liu, K., Ahmed, H., Loppnau, P., Schapira, M., and Min, J. (2015). Structural basis for the discriminative recognition of N6-methyladenosine RNA by the human YT521-B homology domain family of proteins. J Biol Chem 290, 24902–24913.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y., He, X., Wang, S., Sun, B., Jia, R., Chai, P., Li, F., Yang, Y., Ge, S., Jia, R., et al. (2022). The m6A reading protein YTHDF3 potentiates tumorigenicity of cancer stem-like cells in ocular melanoma through facilitating CTNNB1 translation. Oncogene 41, 1281–1297.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Y., Chen, R., Qu, L., and Cao, X. (2020). Noncoding RNA: from dark matter to bright star. Sci China Life Sci 63, 463–468.

    Article  PubMed  Google Scholar 

  • Yin, H., Zhang, X., Yang, P., Zhang, X., Peng, Y., Li, D., Yu, Y., Wu, Y., Wang, Y., Zhang, J., et al. (2021). RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun 12, 1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, J., Chai, P., Xie, M., Ge, S., Ruan, J., Fan, X., and Jia, R. (2021). Histone lactylation drives oncogenesis by facilitating m6A reader protein YTHDF2 expression in ocular melanoma. Genome Biol 22, 85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue, Y., Liu, J., and He, C. (2015). RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 29, 1343–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng, Z., Cao, Z., Zhang, E., Huang, H., and Tang, Y. (2021). Elevated CDK5R1 predicts worse prognosis in hepatocellular carcinoma based on TCGA data. Biosci Rep 41.

  • Zhang, C., and Zhang, B. (2023). RNA therapeutics: updates and future potential. Sci China Life Sci 66, 12–30.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Benavente, C.A., McEvoy, J., Flores-Otero, J., Ding, L., Chen, X., Ulyanov, A., Wu, G., Wilson, M., Wang, J., et al. (2012). A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481, 329–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.M., Li, C.J., Vågbø, C.B., Shi, Y., Wang, W.L., Song, S.H., et al. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49, 18–29.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, L., Liao, D., Zhang, M., Zeng, C., Li, X., Zhang, R., Ma, H., and Kang, T. (2019). YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett 442, 252–261.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, J., Wan, J., Gao, X., Zhang, X., Jaffrey, S.R., and Qian, S.B. (2015). Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526, 591–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, R., Ni, W., Qin, C., Zhou, Y., Li, Y., Huo, J., Bian, L., Zhou, A., and Li, J. (2022). A functional loop between YTH domain family protein YTHDF3 mediated m6A modification and phosphofructokinase PFKL in glycolysis of hepatocellular carcinoma. J Exp Clin Cancer Res 41, 334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81570884, 81872339, and 82272642), Shanghai Municipal Science and Technology Major Project (17JC1420100 and 19JC1410202), Shanghai Science and Technology Development Funds (17DZ2260100 and 19QA1405100) and Ninth People’s Hospital Excellent Youth Fund Program (JYYQ003). We thank members of the Jia’s and Fan’s labs for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianqun Fan, Peiwei Chai or Renbing Jia.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supplemental Data for

11427_2022_2288_MOESM1_ESM.docx

A novel MYCN-YTHDF1 cascade contributes to retinoblastoma tumor growth by eliciting m6A -dependent activation of multiple oncogenes

Supplementary material, approximately 332 KB.

Supplementary material, approximately 38.2 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., He, M., Yang, J. et al. A novel MYCN-YTHDF1 cascade contributes to retinoblastoma tumor growth by eliciting m6A -dependent activation of multiple oncogenes. Sci. China Life Sci. 66, 2138–2151 (2023). https://doi.org/10.1007/s11427-022-2288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2288-4

Navigation