Skip to main content
Log in

QNE1 is a key flowering regulator determining the length of the vegetative period in soybean cultivars

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The soybean E1 gene is a major regulator that plays an important role in flowering time and maturity. However, it remains unclear how cultivars carrying the dominant E1 allele adapt to the higher latitudinal areas of northern China. We mapped the novel quantitative trait locus QNE1 (QTL near E1) for flowering time to the region proximal to E1 on chromosome 6 in two mapping populations. Positional cloning revealed Glyma.06G204300, encoding a TCP-type transcription factor, as a strong candidate gene for QNE1. Association analysis further confirmed that functional single nucleotide polymorphisms (SNPs) at nucleotides 686 and 1,063 in the coding region of Glyma.06G204300 were significantly associated with flowering time. The protein encoded by the candidate gene is localized primarily to the nucleus. Furthermore, soybean and Brassica napus plants overexpressing Glyma.06G204300 exhibited early flowering. We conclude that despite their similar effects on flowering time, QNE1 and E4 may control flowering time through different regulatory mechanisms, based on expression studies and weighted gene co-expression network analysis of flowering time-related genes. Deciphering the molecular basis of QNE1 control of flowering time enriches our knowledge of flowering gene networks in soybean and will facilitate breeding soybean cultivars with broader latitudinal adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The raw sequence data reported in this article have been deposited in the Genome Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) at the National Genomics Data Center (Nucleic Acids Res 2021), China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA: CRA005685 for resequencing data of parents of population of Za14; CRA005687 for RNA-seq of leaf samples of Za14 and Y162 populations; CRA005686 for RNA-seq of leaf samples of transgenic Brassica napus plants overexpressing Qne1 or qne1 from soybean) and are publicly accessible at https://ngdc.cncb.ac.cn/gsa.

References

  • Abe, J., Xu, D., Miyano, A., Komatsu, K., Kanazawa, A., and Shimamoto, Y. (2003). Photoperiod-insensitive japanese soybean landraces differ at two maturity loci. Crop Sci 43, 1300–1304.

    Article  Google Scholar 

  • Akond, M., Liu, S., Schoener, L., Anderson, J.A., Kantartzi, S.K., Meksem, K., Song, Q., Wang, D., Wen, Z., Lightfoot, D.A., et al. (2013). A SNP-based genetic linkage map of soybean using the SoySNP6K Illumina infinium beadchip genotyping array. J Plant Genome Sci 1, 80–89.

    Google Scholar 

  • Balsemão-Pires, E., Andrade, L.R., and Sachetto-Martins, G. (2013). Functional study of TCP23 in Arabidopsis thaliana during plant development. Plant Physiol Biochem 67, 120–125.

    Article  PubMed  Google Scholar 

  • Bernard, R.L. (1971). Two major genes for time of flowering and maturity in soybeans. Crop Sci 11, 242–244.

    Article  Google Scholar 

  • Bhalla, P.L., and Singh, M.B. (2008). Agrobacterium-mediated transformation of brassica napus and brassica oleracea. Nat Protoc 3, 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Bonato, E.R., and Vello, N.A. (1999). E6, a dominant gene conditioning early flowering and maturity in soybeans. Genet Mol Biol 22, 229–232.

    Article  Google Scholar 

  • Bu, T., Lu, S., Wang, K., Dong, L., Li, S., Xie, Q., Xu, X., Cheng, Q., Chen, L., Fang, C., et al. (2021). A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation. Proc Natl Acad Sci USA 118, e2010241118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzzell, R.I. (1971). Inheritance of a soybean flowering response to fluorescent-daylength conditions. Can J Genet Cytol 13, 703–707.

    Article  Google Scholar 

  • Buzzell, R.I., and Voldeng, H.D. (1980). Inheritance of insensitivity to long day length. Soybean Genet Newsl 7, 26–29.

    Google Scholar 

  • Chen, R., Deng, Y., Ding, Y., Guo, J., Qiu, J., Wang, B., Wang, C., Xie, Y., Zhang, Z., Chen, J., et al. (2022). Rice functional genomics: decades’ efforts and roads ahead. Sci China Life Sci 65, 33–92.

    Article  PubMed  Google Scholar 

  • Cober, E.R., and Voldeng, H.D. (2001a). A new soybean maturity and photoperiod-sensitivity locus linked to E1 and T. Crop Sci 41, 698–701.

    Article  Google Scholar 

  • Cober, E.R., and Voldeng, H.D. (2001b). Low R:FR light quality delays flowering of e7e7 soybean lines. Crop Sci 41, 1823–1826.

    Article  Google Scholar 

  • Cober, E.R., Molnar, S.J., Charette, M., and Voldeng, H.D. (2010). A new locus for early maturity in soybean. Crop Sci 50, 524–527.

    Article  Google Scholar 

  • Cober, E.R., Tanner, J.W., and Voldeng, H.D. (1996). Soybean photoperiod-sensitivity loci respond differentially to light quality. Crop Sci 36, 606–610.

    Article  Google Scholar 

  • Dong, L., Fang, C., Cheng, Q., Su, T., Kou, K., Kong, L., Zhang, C., Li, H., Hou, Z., Zhang, Y., et al. (2021). Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat Commun 12, 5445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, C., Ma, Y., Wu, S., Liu, Z., Wang, Z., Yang, R., Hu, G., Zhou, Z., Yu, H., Zhang, M., et al. (2017). Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol 18, 161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang, X., Han, Y., Liu, M., Jiang, J., Li, X., Lian, Q., Xie, X., Huang, Y., Ma, Q., Nian, H., et al. (2021). Modulation of evening complex activity enables north-to-south adaptation of soybean. Sci China Life Sci 64, 179–195.

    Article  CAS  PubMed  Google Scholar 

  • Feng, Z.J., Xu, S.C., Liu, N., Zhang, G.W., Hu, Q.Z., and Gong, Y.M. (2018). Soybean TCP transcription factors: evolution, classification, protein interaction and stress and hormone responsiveness. Plant Physiol Biochem 127, 129–142.

    Article  CAS  PubMed  Google Scholar 

  • Flores, T., Karpova, O., Su, X., Zeng, P., Bilyeu, K., Sleper, D.A., Nguyen, H.T., and Zhang, Z.J. (2008). Silencing of GmFAD3 gene by siRNA leads to low α-linolenic acids (18:3) of fad3-mutant phenotype in soybean [Glycine max (Merr.)]. Transgenic Res 17, 839–850.

    Article  CAS  PubMed  Google Scholar 

  • Garner, W.W., and Allard, H.A. (1920). Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. Mon Wea Rev 48, 415.

    Article  Google Scholar 

  • Glazińska, P., Wilmowicz, E., Wojciechowski, W., Frankowski, K., and Kopcewicz, J. (2014). Impact of InMIR319 and light on the expression of InTCP4 gene involved in the development of Ipomoea nil plants. Acta Physiol Plant 36, 29–43.

    Article  Google Scholar 

  • Han, J., Guo, B., Guo, Y., Zhang, B., Wang, X., and Qiu, L.J. (2019). Creation of early flowering germplasm of soybean by CRISPR/Cas9 technology. Front Plant Sci 10, 1446.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, B., Nan, H., Gao, Y., Tang, L., Yue, Y., Lu, S., Ma, L., Cao, D., Sun, S., Wang, J., et al. (2014). Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes. PLoS ONE 9, e106042.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung, W.Y., Lee, A., Moon, J.S., Kim, Y.S., and Cho, H.S. (2018). Genome-wide identification of flowering time genes associated with vernalization and the regulatory flowering networks in chinese cabbage. Plant Biotechnol Rep 12, 347–363.

    Article  Google Scholar 

  • Karamat, U., Sun, X., Li, N., and Zhao, J. (2021). Genetic regulators of leaf size in Brassica crops. Hortic Res 8, 91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keim, P., Diers, B.W., Olson, T.C., and Shoemaker, R.C. (1990). RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics 126, 735–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong, F., Liu, B., Xia, Z., Sato, S., Kim, B.M., Watanabe, S., Yamada, T., Tabata, S., Kanazawa, A., Harada, K., et al. (2010). Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean. Plant Physiol 154, 1220–1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC BioInf 9, 559.

    Article  Google Scholar 

  • Li, C., Li, Y.H., Li, Y., Lu, H., Hong, H., Tian, Y., Li, H., Zhao, T., Zhou, X., Liu, J., et al. (2020a). A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Mol Plant 13, 745–759.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, B., Zhao, W., Li, D., Chao, H., Zhao, X., Ta, N., Li, Y., Guan, Z., Guo, L., Zhang, L., et al. (2018). Genetic dissection of the mechanism of flowering time based on an environmentally stable and specific QTL in Brassica napus. Plant Sci 277, 296–310.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Dong, Y., Wu, H., Hu, B., Zhai, H., Yang, J., and Xia, Z. (2019). Positional cloning of the flowering time QTL qFT12-1 reveals the link between the clock related PRR homolog with photoperiodic response in soybeans. Front Plant Sci 10, 1303.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X., Chen, Z., Zhang, G., Lu, H., Qin, P., Qi, M., Yu, Y., Jiao, B., Zhao, X., Gao, Q., et al. (2020b). Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions. Sci China Life Sci 63, 1688–1702.

    Article  PubMed  Google Scholar 

  • Liu, W., Jiang, B., Ma, L., Zhang, S., Zhai, H., Xu, X., Hou, W., Xia, Z., Wu, C., Sun, S., et al. (2018). Functional diversification of Flowering Locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytol 217, 1335–1345.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., Kanazawa, A., Matsumura, H., Takahashi, R., Harada, K., and Abe, J. (2008). Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene. Genetics 180, 995–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, S., Dong, L., Fang, C., Liu, S., Kong, L., Cheng, Q., Chen, L., Su, T., Nan, H., Zhang, D., et al. (2020). Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 52, 428–436.

    Article  CAS  PubMed  Google Scholar 

  • Lu, S., Zhao, X., Hu, Y., Liu, S., Nan, H., Li, X., Fang, C., Cao, D., Shi, X., Kong, L., et al. (2017). Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet 49, 773–779.

    Article  CAS  PubMed  Google Scholar 

  • Manassero, N.G.U., Viola, I.L., Welchen, E., and Gonzalez, D.H. (2013). TCP transcription factors: architectures of plant form. Biomol Concepts 4, 111–127.

    Article  CAS  PubMed  Google Scholar 

  • Mansur, L.M., Lark, K.G., Kross, H., and Oliveira, A. (1993). Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theoret Appl Genet 86, 907–913.

    Article  CAS  Google Scholar 

  • McBlain, B.A., and Bernard, R.L. (1987). A new gene affecting the time of flowering and maturity in soybeans. J Heredity 18, 160–162.

    Article  Google Scholar 

  • Molnar, S.J., Rai, S., Charette, M., and Cober, E.R. (2003). Simple sequence repeat (SSR) markers linked to E1, E3, E4, and E7 maturity genes in soybean. Genome 46, 1024–1036.

    Article  CAS  PubMed  Google Scholar 

  • Owen, F.V. (1927). Inheritance studies in soybeans. II. Glabrousness, color of pubescence, time of maturity, and linkage relations. Genetics 12, 519–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel, R.K., and Jain, M. (2012). NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 1, e30619.

    Article  Google Scholar 

  • Ray, J.D., Hinson, K., Mankono, J.E.B., and Malo, M.F. (1995). Genetic control of a long-juvenile trait in soybean. Crop Sci 35, 1001–1006.

    Article  Google Scholar 

  • Samanfar, B., Molnar, S.J., Charette, M., Schoenrock, A., Dehne, F., Golshani, A., Belzile, F., and Cober, E.R. (2011). Mapping and identification of a potential candidate gene for a novel maturity locus, E10, in soybean. Theor Appl Genet 130, 377–390.

    Article  Google Scholar 

  • Shim, S., Ha, J., Kim, M.Y., Choi, M.S., Kang, S.T., Jeong, S.C., Moon, J. K., and Lee, S.H. (2019). GmBRC1 is a candidate gene for branching in soybean (Glycine max (L.) Merrill). Int J Mol Sci 20, 135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sri, T., Gupta, B., Tyagi, S., and Singh, A. (2020). Homeologs of Brassica SOC1, a central regulator of flowering time, are differentially regulated due to partitioning of evolutionarily conserved transcription factor binding sites in promoters. Mol Phylogenet Evol 147, 106777.

    Article  PubMed  Google Scholar 

  • Silva, G.F.F., Silva, E.M., Correa, J.P.O., Vicente, M.H., Jiang, N., Notini, M.M., Junior, A.C., De Jesus, F.A., Castilho, P., Carrera, E., et al. (2019). Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. New Phytol 221, 1328–1344.

    Article  CAS  PubMed  Google Scholar 

  • Song, Q., Jia, G., Zhu, Y., Grant, D., Nelson, R.T., Hwang, E.Y., Hyten, D. L., and Cregan, P.B. (2010). Abundance of SSR motifs and development of candidate polymorphic SSR markers (BARCSOYSSR_1.0) in soybean. Crop Sci 50, 1950–1960.

    Article  CAS  Google Scholar 

  • Sparkes, I.A., Runions, J., Kearns, A., and Hawes, C. (2006). Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1, 2019–2025.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, D.W., Cober, E.R., and Bernard, R.L. (2003). Modeling genetic effects on the photothermal response of soybean phenological development. Agronomy J 95, 65–70.

    Article  Google Scholar 

  • Tsubokura, Y., Watanabe, S., Xia, Z., Kanamori, H., Yamagata, H., Kaga, A., Katayose, Y., Abe, J., Ishimoto, M., and Harada, K. (2014). Natural variation in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot 113, 429–441.

    Article  CAS  PubMed  Google Scholar 

  • Tsubokura, Y., Matsumura, H., Xu, M., Liu, B., Nakashima, H., Anai, T., Kong, F., Yuan, X., Kanamori, H., Katayose, Y., et al. (2013). Genetic variation in soybean at the maturity locus E4 is involved in adaptation to long days at high latitudes. Agronomy 3, 117–134.

    Article  CAS  Google Scholar 

  • van Es, S.W., Silveira, S.R., Rocha, D.I., Bimbo, A., Martinelli, A.P., Dornelas, M.C., Angenent, G.C., and Immink, R.G.H. (2018). Novel functions of the Arabidopsis transcription factor TCP5 in petal development and ethylene biosynthesis. Plant J 94, 867–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Sun, S., Wu, T., Liu, L., Sun, X., Cai, Y., Li, J., Jia, H., Yuan, S., Chen, L., et al. (2020a). Natural variation and CRISPR/Cas9-mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechnol J 18, 1869–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Yuan, L., Su, T., Wang, Q., Gao, Y., Zhang, S., Jia, Q., Yu, G., Fu, Y., Cheng, Q., et al. (2020b). Light- and temperature-entrainable circadian clock in soybean development. Plant Cell Environ 43, 637–648.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y.Y., Li, Y.Q., Wu, H.Y., Hu, B., Zheng, J.J., Zhai, H., Lv, S.X., Liu, X.L., Chen, X., Qiu, H.M., et al. (2018). Genotyping of soybean cultivars with medium-density array reveals the population structure and QTNs underlying maturity and seed traits. Front Plant Sci 9.

  • Watanabe, S., Hideshima, R., Xia, Z., Tsubokura, Y., Sato, S., Nakamoto, Y., Yamanaka, N., Takahashi, R., Ishimoto, M., Anai, T., et al. (2009). Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182, 1251–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, S., Xia, Z., Hideshima, R., Tsubokura, Y., Sato, S., Yamanaka, N., Takahashi, R., Anai, T., Tabata, S., Kitamura, K., et al. (2011). A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188, 395–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, Z., Zhai, H., Wu, H., Xu, K., Watanabe, S., and Harada, K. (2021). The synchronized efforts to decipher the molecular basis for soybean maturity loci E1, E2, and E3 that regulate flowering and maturity. Front Plant Sci 12.

  • Xia, Z., Watanabe, S., Yamada, T., Tsubokura, Y., Nakashima, H., Zhai, H., Anai, T., Sato, S., Yamazaki, T., Lü, S., et al. (2012). Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109, E2155–E2164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, Z., Tsubokura, Y., Hoshi, M., Hanawa, M., Yano, C., Okamura, K., Ahmed, T.A., Anai, T., Watanabe, S., Hayashi, M., et al. (2001). An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population. DNA Res 14, 257–269.

    Article  Google Scholar 

  • Xiao, D., Zhao, J.J., Hou, X.L., Basnet, R.K., Carpio, D.P.D., Zhang, N.W., Bucher, J., Lin, K., Cheng, F., Wang, X.W., et al. (2013). The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. J Exp Bot 64, 4503–4516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, M., Xu, Z., Liu, B., Kong, F., Tsubokura, Y., Watanabe, S., Xia, Z., Harada, K., Kanazawa, A., Yamada, T., et al. (2013). Genetic variation in four maturity genes affects photoperiod insensitivity and PHYA-regulated post-flowering responses of soybean. BMC Plant Biol 13, 91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, X., Meng, Q.L., Geng, M.F., Ren, N.N., Zhou, L., Du, Y.S., Cai, Z., Wang, M.X., Wang, X., Wang, X.H., et al. (2020). Divergence in flowering time is a major component contributing to reproductive isolation between two wild rice species (Oryza rufipogon and O. nivara). Sci China Life Sci 63, 1714–1724.

    Article  PubMed  Google Scholar 

  • Yamanaka, N., Ninomiya, S., Hoshi, M., Tsubokura, Y., Yano, M., Nagamura, Y., Sasaki, T., and Harada, K. (2001). An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res 8, 61–72.

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka, N., Watanabe, S., Toda, K., Hayashi, M., Fuchigami, H., Takahashi, R., and Harada, K. (2005). Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl Genet 110, 634–639.

    Article  CAS  PubMed  Google Scholar 

  • Yang, D.G., Zhao, W., Meng, Y.Y., Li, H.Y., and Liu, B. (2015). A CIB1-LIKE transcription factor GmCIL10 from soybean positively regulates plant flowering. Sci China Life Sci 58, 261–269.

    Article  CAS  PubMed  Google Scholar 

  • Yang, G., Zhai, H., Wu, H., Zhang, X., Lü, S., Wang, Y., Li, Y., Hu, B., Wang, L., Wen, Z., et al. (2011). QTL effects and epistatic interaction for flowering time and branch number in a soybean mapping population of Japanese×Chinese cultivars. J Integrative Agr 16, 1900–1912.

    Article  Google Scholar 

  • Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). ClusterProfiler: an R package for comparing biological themes among gene clusters. OMICSJ Integrative Biol 16, 284–287.

    Article  CAS  Google Scholar 

  • Yu, X., Xia, S., Xu, Q., Cui, Y., Gong, M., Zeng, D., Zhang, Q., Shen, L., Jiao, G., Gao, Z., et al. (2020). ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality. Sci China Life Sci 63, 228–238.

    Article  CAS  PubMed  Google Scholar 

  • Zhai, H., Lü, S., Liang, S., Wu, H., Zhang, X., Liu, B., Kong, F., Yuan, X., Li, J., and Xia, Z. (2014a). GmFT4, a homolog of FLOWERING LOCUS T, is positively regulated by E1 and functions as a flowering repressor in soybean. PLoS ONE 9, e89030.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhai, H., Lü, S., Wang, Y., Chen, X., Ren, H., Yang, J., Cheng, W., Zong, C., Gu, H., Qiu, H., et al. (2014b). Allelic variations at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars. PLoS ONE 9, e97636.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Li, H., Li, R., Hu, R., Fan, C., Chen, F., Wang, Z., Liu, X., Fu, Y., and Lin, C. (2008). Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc Natl Acad Sci USA 105, 21028–21033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S.R., Wang, H., Wang, Z., Ren, Y., Niu, L., Liu, J., and Liu, B. (2017). Photoperiodism dynamics during the domestication and improvement of soybean. Sci China Life Sci 60, 1416–1427.

    Article  PubMed  Google Scholar 

  • Zhou, Z., Jiang, Y., Wang, Z., Gou, Z., Lyu, J., Li, W., Yu, Y., Shu, L., Zhao, Y., Ma, Y., et al. (2015). Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33, 408–414.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y., Xun, Q., Zhang, D., Lv, M., Ou, Y., and Li, J. (2019). TCP transcription factors associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to regulate thermomorphogenesis in Arabidopsis thaliana. iScience 15, 600–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program (XDA24010105-4, XDA28070000), the Key Deployment Projects (ZDRW-ZS-2019-2) of the Chinese Academy of Sciences, the National Natural Science Foundation of China (U21A20215, 31771818, 31771869), and the Young Scientists Group Project (2022QNXZ05) of Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengjun Xia or Zhixi Tian.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Z., Zhai, H., Zhang, Y. et al. QNE1 is a key flowering regulator determining the length of the vegetative period in soybean cultivars. Sci. China Life Sci. 65, 2472–2490 (2022). https://doi.org/10.1007/s11427-022-2117-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2117-x

Navigation