Skip to main content
Log in

Exploring the role of autophagy during early human embryonic development through single-cell transcriptome and methylome analyses

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Early human embryogenesis is a very sophisticated process due to its unique gene regulatory network. Autophagy has been suggested to play an important role in mediating the development of early embryonic cells in mammals. However, evidence showing how autophagy regulates early human embryogenesis remains to be further explored. In this study, we systematically investigated the human transcriptome and methylome patterns of autophagy-related (ATG) genes in early embryonic cells at single-cell resolution. We analyzed the transcriptomic data of 365 cells and methylome data of 265 cells. The results showed that most ATG genes remained epigenetically active and were expressed stably throughout early embryogenesis, whereas the dynamics varied among different developmental stages. This evidence indicated that the autophagy pathway was constitutively activated and exerted a fundamental role in early human embryo development. Our work, for the first time, comprehensively reveals the features of autophagy during early human embryo development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Rawi, S., Louvet-Vallée, S., Djeddi, A., Sachse, M., Culetto, E., Hajjar, C., Boyd, L., Legouis, R., and Galy, V. (2011). Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334, 1144–1147.

    Article  CAS  PubMed  Google Scholar 

  • Ambartsumyan, G., and Clark, A.T. (2008). Aneuploidy and early human embryo development. Hum Mol Genet 17, R10–R15.

    Article  CAS  PubMed  Google Scholar 

  • Avagliano, L., Terraneo, L., Virgili, E., Martinelli, C., Doi, P., Samaja, M., Bulfamante, G.P., and Marconi, A.M. (2015). Autophagy in normal and abnormal early human pregnancies. Reprod Sci 22, 838–844.

    Article  PubMed  Google Scholar 

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36, 411–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong, H., Wu, J., Gonzales, L.K., Guttentag, S.H., Thompson, C.B., and Lindsten, T. (2014). Analysis of a lung defect in autophagy-deficient mouse strains. Autophagy 10, 45–56.

    Article  CAS  PubMed  Google Scholar 

  • Codogno, P., Mehrpour, M., and Proikas-Cezanne, T. (2012). Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol 13, 7–12.

    Article  CAS  Google Scholar 

  • Deas, E., Plun-Favreau, H., Gandhi, S., Desmond, H., Kjaer, S., Loh, S.H.Y., Renton, A.E.M., Harvey, R.J., Whitworth, A.J., Martins, L.M., et al. (2011). PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 20, 867–879.

    Article  CAS  PubMed  Google Scholar 

  • Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi, L., and Green, D.R. (2019). Autophagy-independent functions of the autophagy machinery. Cell 177, 1682–1699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan, B., Peng, X., Nagy, T., Alcaraz, A., Gu, H., and Guan, J.L. (2006). Role of FIP200 in cardiac and liver development and its regulation of TNFa and TSC-mTOR signaling pathways. J Cell Biol 175, 121–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick, D., Barth, S., and Macleod, K.F. (2010). Autophagy: cellular and molecular mechanisms. J Pathol 221, 3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y.X., Han, X.S., and Jing, Q. (2019). Autophagy in Development and Differentiation. In: Qin, Z.H., ed. Autophagy: Biology and Diseases. Advances in Experimental Medicine and Biology. Singapore: Springer. 469–487.

    Chapter  Google Scholar 

  • Hung, T.H., Hsieh, T.T., Chen, S.F., Li, M.J., and Yeh, Y.L. (2013). Autophagy in the human placenta throughout gestation. PLoS ONE 8, e83475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaizuka, T., and Mizushima, N. (2016). Atg13 is essential for autophagy and cardiac development in mice. Mol Cell Biol 36, 585–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N., Ohsumi, Y., Uchiyama, Y., et al. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169, 425–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokuhisa, T., and Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.E., Hwang, K.C., Sun, S.C., Xu, Y.N., and Kim, N.H. (2011). Modulation of autophagy influences development and apoptosis in mouse embryos developing in vitro. Mol Reprod Dev 78, 498–509.

    Article  CAS  PubMed  Google Scholar 

  • Levine, B., and Kroemer, G. (2019). Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L., Guo, F., Gao, Y., Ren, Y., Yuan, P., Yan, L., Li, R., Lian, Y., Li, J., Hu, B., et al. (2018). Single-cell multi-omics sequencing of human early embryos. Nat Cell Biol 20, 847–858.

    Article  CAS  PubMed  Google Scholar 

  • Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930.

    Article  CAS  PubMed  Google Scholar 

  • Luo, W., and Brouwer, C. (2013). Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29, 1830–1831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, Z., Xu, X., Sho, T., Zhang, J., Xu, W., Yao, J., and Xu, J. (2019). ROS-induced autophagy regulates porcine trophectoderm cell apoptosis, proliferation, and differentiation. Am J Physiol Cell Physiol 316, C198–C209.

    Article  CAS  PubMed  Google Scholar 

  • Malhotra, R., Warne, J.P., Salas, E., Xu, A.W., and Debnath, J. (2015). Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity. Autophagy 11, 145–154.

    PubMed  PubMed Central  Google Scholar 

  • Melland-Smith, M., Ermini, L., Chauvin, S., Craig-Barnes, H., Tagliaferro, A., Todros, T., Post, M., and Caniggia, I. (2015). Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preeclampsia. Autophagy 11, 653–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima, N., and Levine, B. (2010). Autophagy in mammalian development and differentiation. Nat Cell Biol 12, 823–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima, N., and Levine, B. (2020). Autophagy in human diseases. N Engl J Med 383, 1564–1576.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima, A., Tsuda, S., Kusabiraki, T., Aoki, A., Ushijima, A., Shima, T., Cheng, S.B., Sharma, S., and Saito, S. (2019). Current understanding of autophagy in pregnancy. Int J Mol Sci 20, 2342.

    Article  CAS  PubMed Central  Google Scholar 

  • Oh, S.Y., Choi, S.J., Kyung Hee Kim, S.J., Cho, E.Y., Kim, J.H., and Roh, C.R. (2008). Autophagy-related proteins, LC3 and Beclin-1, in placentas from pregnancies complicated by preeclampsia. Reprod Sci 15, 912–920.

    Article  CAS  PubMed  Google Scholar 

  • Oh, S.Y., Hwang, J.R., Choi, M., Kim, Y.M., Kim, J.S., Suh, Y.L., Choi, S. J., and Roh, C.R. (2020). Autophagy regulates trophoblast invasion by targeting NF-κB activity. Sci Rep 10, 14033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojansky, R., Cha, M.Y., and Chan, D.C. (2016). Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. eLife 5, e17896.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, J.L., and Cuervo, A.M. (2014). Autophagy and human disease: emerging themes. Curr Opin Genet Dev 26, 16–23.

    Article  CAS  PubMed  Google Scholar 

  • Shen, X.H., Zhang, N., Wang, Z.D., Bai, G.Y., Zheng, Z., Gu, Y.L., Wu, Y. S., Liu, H., Zhou, D.J., and Lei, L. (2015). Induction of autophagy improves embryo viability in cloned mouse embryos. Sci Rep 5, 17829.

    Article  CAS  PubMed  Google Scholar 

  • Singla, S., Iwamoto-Stohl, L.K., Zhu, M., and Zernicka-Goetz, M. (2020). Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat Commun 11, 2958.

    Article  CAS  PubMed  Google Scholar 

  • Song, B.S., Yoon, S.B., Kim, J.S., Sim, B.W., Kim, Y.H., Cha, J.J., Choi, S. A., Min, H.K., Lee, Y., Huh, J.W., et al. (2012). Induction of autophagy promotes preattachment development of bovine embryos by reducing endoplasmic reticulum stress. Biol Reprod 87.

  • Song, W.H., Yi, Y.J., Sutovsky, M., Meyers, S., and Sutovsky, P. (2016). Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc Natl Acad Sci USA 113, E5261–E5270.

    CAS  PubMed  Google Scholar 

  • Sou, Y., Waguri, S., Iwata, J., Ueno, T., Fujimura, T., Hara, T., Sawada, N., Yamada, A., Mizushima, N., Uchiyama, Y., et al. (2008). The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Biol Cell 19, 4762–4775.

    Article  CAS  PubMed  Google Scholar 

  • Su, Y., Zhang, J.J., He, J.L., Liu, X.Q., Chen, X.M., Ding, Y.B., Tong, C., Peng, C., Geng, Y.Q., Wang, Y.X., et al. (2020). Endometrial autophagy is essential for embryo implantation during early pregnancy. J Mol Med 98, 555–567.

    Article  CAS  PubMed  Google Scholar 

  • Tan, P., Ren, Y., Zhang, Y., Lin, Y., Cui, T., Huang, Y., Zhang, Y., Ning, L., Yu, J., Gao, S., et al. (2019). Dissecting dynamic expression of autophagy-related genes during human fetal digestive tract development via single-cell RNA sequencing. Autophagy 15, 2019–2021.

    Article  CAS  PubMed  Google Scholar 

  • Toralova, T., Kinterova, V., Chmelikova, E., and Kanka, J. (2020). The neglected part of early embryonic development: maternal protein degradation. Cell Mol Life Sci 77, 3177–3194.

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto, S. (2015). Autophagic activity as an indicator for selecting good quality embryos. Reprod Med Biol 14, 57–64.

    Article  PubMed  Google Scholar 

  • Tsukamoto, S., Kuma, A., Murakami, M., Kishi, C., Yamamoto, A., and Mizushima, N. (2008). Autophagy is essential for preimplantation development of mouse embryos. Science 321, 117–120.

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto, S., Hara, T., Yamamoto, A., Kito, S., Minami, N., Kubota, T., Sato, K., and Kokubo, T. (2014). Fluorescence-based visualization of autophagic activity predicts mouse embryo viability. Sci Rep 4, 4533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Xu, W., Zhang, Y., Zhang, F., and Huang, K. (2018). PARP1 promote autophagy in cardiomyocytes via modulating FoxO3a transcription. Cell Death Dis 9, 1047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wen, L., and Tang, F. (2019). Human germline cell development: from the perspective of single-cell sequencing. Mol Cell 76, 320–328.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Y.N., Shen, X.H., Lee, S.E., Kwon, J.S., Kim, D.J., Heo, Y.T., Cui, X. S., and Kim, N.H. (2012). Autophagy influences maternal mRNA degradation and apoptosis in porcine parthenotes developing in vitro. J Reprod Dev 58, 576–584.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Z., Huang, K., Cai, C., Cai, L., Jiang, C.Y., Feng, Y., Liu, Z., Zeng, Q., Cheng, L., Sun, Y.E., et al. (2013). Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, A., Mizushima, N., and Tsukamoto, S. (2014). Fertilization-induced autophagy in mouse embryos is independent of mTORC11. Biol Reprod 91, 7.

    Article  PubMed  CAS  Google Scholar 

  • Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., et al. (2013). Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20, 1131–1139.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Liu, L., Xie, M., Sun, X., Yu, Y., Kang, R., Yang, L., Zhu, S., Cao, L., and Tang, D. (2015). Poly-ADP-ribosylation of HMGB1 regulates TNFSF10/TRAIL resistance through autophagy. Autophagy 11, 214–224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, G., Wang, L.G., Han, Y., and He, Q.Y. (2012). clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue, Z., Jin, S., Yang, C., Levine, A.J., and Heintz, N. (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100, 15077–15082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Yan, Z., Qin, Q., Nisenblat, V., Chang, H.M., Yu, Y., Wang, T., Lu, C., Yang, M., Yang, S., et al. (2018). Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Mol Cell 72, 1021–1034.e4.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, F., Wang, R., Yuan, P., Ren, Y., Mao, Y., Li, R., Lian, Y., Li, J., Wen, L., Yan, L., et al. (2019). Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572, 660–664.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (2019YFA0801400, 2017YFA0103801, and 2018YFC1004000) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA16020703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liying Yan.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Guo, Q., Zhu, Y. et al. Exploring the role of autophagy during early human embryonic development through single-cell transcriptome and methylome analyses. Sci. China Life Sci. 65, 940–952 (2022). https://doi.org/10.1007/s11427-021-1948-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-1948-1

Keywords

Navigation