Skip to main content
Log in

Genome sequencing of the bacterial blight pathogen DY89031 reveals its diverse virulence and origins of Xanthomonas oryzae pv. oryzae strains

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), belonging to Xanthomonas sp., causes one of the most destructive vascular diseases in rice worldwide, particularly in Asia and Africa. To better understand Xoo pathogenesis, we performed genome sequencing of the Korea race 1 strain DY89031 (J18) and analyzed the phylogenetic tree of 63 Xoo strains. We found that the rich diversity of evolutionary features is likely associated with the rice cultivation regions. Further, virulence effector proteins secreted by the type III secretion system (T3SS) of Xoo showed pathogenesis divergence. The genome of DY89031 shows a remarkable difference from that of the widely prevailed Philippines race 6 strain PXO99A, which is avirulent to rice Xa21, a well-known disease resistance (R) gene that can be broken down by DY89031. Interestingly, plant inoculation experiments with the PXO99A transformants expressing the DY89031 genes enabled us to identify additional TAL (transcription activator-like) and non-TAL effectors that may support DY89031-specific virulence. Characterization of DY89031 genome and identification of new effectors will facilitate the investigation of the rice-Xoo interaction and new mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, S., Ranaghan, K.E., and Azam, S.S. (2019). Combating tigecycline resistant Acinetobacter baumannii: A leap forward towards multi-epitope based vaccine discovery. Eur J Pharm Sci 132, 1–17.

    Article  CAS  PubMed  Google Scholar 

  • Alegria, M.C., Souza, D.P., Andrade, M.O., Docena, C., Khater, L., Ramos, C.H.I., da Silva, A.C.R., and Farah, C.S. (2005). Identification of new protein-protein interactions involving the products of the chromosome-and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri. J Bacteriol 187, 2315–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An, S.Q., Potnis, N., Dow, M., Vorhölter, F.J., He, Y.Q., Becker, A., Teper, D., Li, Y., Wang, N., Bleris, L., et al. (2020). Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 44, 1–32.

    Article  CAS  PubMed  Google Scholar 

  • Antony, G., Zhou, J., Huang, S., Li, T., Liu, B., White, F., and Yang, B. (2010). Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22, 3864–3876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartetzko, V., Sonnewald, S., Vogel, F., Hartner, K., Stadler, R., Hammes, U.Z., and Börnke, F. (2009). The Xanthomonas campestris pv. vesicatoria type III effector protein XopJ inhibits protein secretion: evidence for interference with cell wall-associated defense responses. MPMI 22, 655–664.

    Article  CAS  PubMed  Google Scholar 

  • Bhasin, H., Bhatia, D., Raghuvanshi, S., Lore, J.S., Sahi, G.K., Kaur, B., Vikal, Y., and Singh, K. (2011). New PCR-based sequence-tagged site marker for bacterial blight resistance gene Xa38 of rice. Mol Breeding 30, 607–611.

    Article  Google Scholar 

  • Boch, J., and Bonas, U. (2010). Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol 48, 419–436.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanove, A.J., Schornack, S., and Lahaye, T. (2010). TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13, 394–401.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L.Q., Qu, X.Q., Hou, B.H., Sosso, D., Osorio, S., Fernie, A.R., and Frommer, W.B. (2012). Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335, 207–211.

    Article  CAS  PubMed  Google Scholar 

  • Cianfanelli, F.R., Alcoforado Diniz, J., Guo, M., De Cesare, V., Trost, M., and Coulthurst, S.J. (2016). VgrG and PAAR proteins define distinct versions of a functional type VI secretion system. PLoS Pathog 12, e1005735.

    Article  PubMed  PubMed Central  Google Scholar 

  • da Silva, F.G., Shen, Y., Dardick, C., Burdman, S., Yadav, R.C., de Leon, A. L., and Ronald, P.C. (2003). Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. MPMI 17, 593–601.

    Article  Google Scholar 

  • Eom, J.S., Luo, D., Atienza-Grande, G., Yang, J., Ji, C., Thi Luu, V., Huguet-Tapia, J.C., Char, S.N., Liu, B., Nguyen, H., et al. (2019). Diagnostic kit for rice blight resistance. Nat Biotechnol 37, 1372–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, Y., Ning, Y., Yang, D.L., Zhai, K., Wang, G.L., and He, Z. (2020). Molecular Basis of disease resistance and perspectives on breeding strategies for resistance improvement in crops. Mol Plant 13, 1402–1419.

    Article  CAS  PubMed  Google Scholar 

  • Fraikin, N., Goormaghtigh, F., and Van Melderen, L. (2020). Type II toxin-antitoxin systems: evolution and revolutions. J Bacteriol 202, e00763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furutani, A., Takaoka, M., Sanada, H., Noguchi, Y., Oku, T., Tsuno, K., Ochiai, H., and Tsuge, S. (2009). Identification of novel type III secretion effectors in Xanthomonas oryzae pv. oryzae. MPMI 22, 96–106.

    Article  CAS  PubMed  Google Scholar 

  • Gao, M.J., and He, Z.H. (2013). Studies on innate immunity in rice (in Chinese). Sci Sin Vitae 43, 1016–1029.

    Article  Google Scholar 

  • Gerlach, R.G., and Hensel, M. (2007). Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol 297, 401–415.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, C., Szurek, B., Manceau, C., Mathieu, T., Séré, Y., and Verdier, V. (2007). Molecular and pathotypic characterization of new Xanthomonas oryzae strains from West Africa. MPMI 20, 534–546.

    Article  CAS  PubMed  Google Scholar 

  • Hutin, M., Sabot, F., Ghesquière, A., Koebnik, R., and Szurek, B. (2015). A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J 84, 694–703.

    Article  CAS  PubMed  Google Scholar 

  • Ji, C., Ji, Z., Liu, B., Cheng, H., Liu, H., Liu, S., Yang, B., and Chen, G. (2020). Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors. Plant Commun 1, 100087.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji, Z., Ji, C., Liu, B., Zou, L., Chen, G., and Yang, B. (2016). Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nat Commun 7, 13435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, G., Liu, D., Yin, D., Zhou, Z., Shi, Y., Li, C., Zhu, L., and Zhai, W. (2020a). A rice NBS-ARC gene conferring quantitative resistance to bacterial blight is regulated by a pathogen effector-inducible miRNA. Mol Plant 13, 1752–1767.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, N., Yan, J., Liang, Y., Shi, Y., He, Z., Wu, Y., Zeng, Q., Liu, X., and Peng, J. (2020b). Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)—an updated review. Rice 13, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones, J.D.G., and Dangl, J.L. (2006). The plant immune system Nature 444, 323–329.

    CAS  PubMed  Google Scholar 

  • Kim, J.G., Li, X., Roden, J.A., Taylor, K.W., Aakre, C.D., Su, B., Lalonde, S., Kirik, A., Chen, Y., Baranage, G., et al. (2009). Xanthomonas T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. Plant Cell 21, 1305–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C., and Salzberg, S.L. (2004). Versatile and open software for comparing large genomes. Genome Biol 5, R12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, B.M., Park, Y.J., Park, D.S., Kang, H.W., Kim, J.G., Song, E.S., Park, I.C., Yoon, U.H., Hahn, J.H., Koo, B.S., et al. (2005). The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 33, 577–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Deng, Y., Ning, Y., He, Z., and Wang, G.L. (2020). Exploiting broad-spectrum disease resistance in crops: From molecular dissection to breeding. Annu Rev Plant Biol 71, 575–603.

    Article  CAS  PubMed  Google Scholar 

  • Mew, T.W. (1987). Current status and future prospects of research on bacterial blight of rice. Annu Rev Phytopathol 25, 359–382.

    Article  Google Scholar 

  • Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Meng, X., Paschon, D.E., Leung, E., Hinkley, S.J., et al. (2011). A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29, 143–148.

    Article  CAS  PubMed  Google Scholar 

  • Niño-Liu, D.O., Ronald, P.C., and Bogdanove, A.J. (2006). Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7, 303–324.

    Article  PubMed  Google Scholar 

  • Ochiai, H., Inoue, Y., Takeya, M., Sasaki, A., and Kaku, H. (2005). Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. JARQ 39, 275–287.

    Article  CAS  Google Scholar 

  • Pfeilmeier, S., Caly, D.L., and Malone, J.G. (2016). Bacterial pathogenesis of plants: future challenges from a microbial perspective. Mol Plant Pathol 17, 1298–1313.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pruitt, R.N., Schwessinger, B., Joe, A., Thomas, N., Liu, F., Albert, M., Robinson, M.R., Chan, L.J.G., Luu, D.D., Chen, H., et al. (2015). The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci Adv 1, e1500245.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin, J., Zhou, X., Sun, L., Wang, K., Yang, F., Liao, H., Rong, W., Yin, J., Chen, H., Chen, X., et al. (2018). The Xanthomonas effector XopK harbours E3 ubiquitin-ligase activity that is required for virulence. New Phytol 220, 219–231.

    Article  CAS  PubMed  Google Scholar 

  • Salzberg, S.L., Sommer, D.D., Schatz, M.C., Phillippy, A.M., Rabinowicz, P.D., Tsuge, S., Furutani, A., Ochiai, H., Delcher, A.L., Kelley, D., et al. (2008). Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 9, 204.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulze, S., Kay, S., Büttner, D., Egler, M., Eschen-Lippold, L., Hause, G., Krüger, A., Lee, J., Müller, O., Scheel, D., et al. (2012). Analysis of new type III effectors from Xanthomonas uncovers XopB and XopS as suppressors of plant immunity. New Phytol 195, 894–911.

    Article  CAS  PubMed  Google Scholar 

  • Sinha, D., Gupta, M.K., Patel, H.K., Ranjan, A., and Sonti, R.V. (2013). Cell wall degrading enzyme induced rice innate immune responses are suppressed by the type 3 secretion system effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae. PLoS ONE 8, e75867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, C., and Yang, B. (2010). Mutagenesis of 18 type III effectors reveals virulence function of XopZPXO99 in Xanthomonas oryzae pv. oryzae. MPMI 23, 893–902.

    Article  CAS  PubMed  Google Scholar 

  • Song, W.Y., Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.X., Zhu, L.H., et al. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804–1806.

    Article  CAS  PubMed  Google Scholar 

  • Souza, D.P., Andrade, M.O., Alvarez-Martinez, C.E., Arantes, G.M., Farah, C.S., and Salinas, R.K. (2011). A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins. PLoS Pathog 7, e1002031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streubel, J., Pesce, C., Hutin, M., Koebnik, R., Boch, J., and Szurek, B. (2013). Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol 200, 808–819.

    Article  CAS  PubMed  Google Scholar 

  • Timilsina, S., Potnis, N., Newberry, E.A., Liyanapathiranage, P., Iruegas-Bocardo, F., White, F.F., Goss, E.M., and Jones, J.B. (2020). Xanthomonas diversity, virulence and plant-pathogen interactions. Nat Rev Microbiol 18, 415–427.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., and Chai, J. (2020). Molecular actions of NLR immune receptors in plants and animals. Sci China Life Sci 63, 1303–1316.

    Article  PubMed  Google Scholar 

  • Wang, J., Chern, M., and Chen, X. (2020). Structural dynamics of a plant NLR resistosome: transition from autoinhibition to activation. Sci China Life Sci 63, 617–619.

    Article  PubMed  Google Scholar 

  • Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., et al. (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, X.M., Li, Y.R., Zou, L.F., and Chen, G.Y. (2007). Gene-for-gene relationships between rice and diverse avrBs3/pthA avirulence genes in Xanthomonas oryzae pv. oryzae. Plant Pathol 56, 26–34.

    Article  CAS  Google Scholar 

  • Yang, B., Sugio, A., and White, F.F. (2006). Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci USA 103, 10503–10508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, D.L., Li, Q., Deng, Y.W., Lou, Y.G., Wang, M.Y., Zhou, G.X., Zhang, Y.Y., and He, Z.H. (2008). Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Mol Plant 1, 528–537.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B., Zhang, H., Li, F., Ouyang, Y., Yuan, M., Li, X., Xiao, J., and Wang, S. (2020). Multiple alleles encoding atypical NLRs with unique central tandem repeats in rice confer resistance to Xanthomonas oryzae pv. oryzae. Plant Commun 1, 100088.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., Peng, Z., Long, J., Sosso, D., Liu, B., Eom, J.S., Huang, S., Liu, S., Vera Cruz, C., Frommer, W.B., et al. (2015). Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J 82, 632–643.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Chinese Academy of Sciences (XDB27040201) and the National Natural Science Foundation of China (3181101746). We would like to thank Prof. Jianlong Xu (Institute of Crop Sciences, CAAS) for providing rice germplasm resources, Prof. Gongyou Chen (Shanghai Jiao Tong University) for providing Xoo strains, Prof. Yiwen Deng for rice disease evaluation, Dr. Zeling Xu (South China Agricultural University) for helping with the genome sequencing analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuhua He.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Yan, B., Gong, X. et al. Genome sequencing of the bacterial blight pathogen DY89031 reveals its diverse virulence and origins of Xanthomonas oryzae pv. oryzae strains. Sci. China Life Sci. 64, 2175–2185 (2021). https://doi.org/10.1007/s11427-020-1917-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1917-x

Keywords

Navigation