Skip to main content
Log in

Lactate anions participate in T cell cytokine production and function

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

After antigen stimulation, T cells preferentially increase aerobic glycolysis to meet the bioenergetic and biosynthetic demands of T cell activation, proliferation, and effector functions. Lactate, a by-product of glycolysis, has been reported to function as an important energy source and signaling molecule. Here, we found that lactate anions are involved in cytokine production in T cells after TCR activation. During ex vivo T cell activation, the addition of excess sodium lactate (NaL) increased the production of cytokines (such as IFNγ/IL-2/TNFα) more than the addition of sodium chloride (NaCl). This enhanced cytokine production was dependent on TCR/CD3 activation but not CD28 activation. In vivo, NaL treatment inhibited tumour growth in subcutaneously transplanted tumour models in a T cell-dependent manner, which was consistent with increased T cell cytokine production in the NaL treatment group compared to the NaCl treatment group. Furthermore, a mechanistic experiment showed that this enhanced cytokine production was regulated by GAPDH-mediated post-transcriptional regulation. Taken together, our findings indicate a new regulatory mechanism involved in glycolysis that promotes T cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bantug, G.R., Galluzzi, L., Kroemer, G., and Hess, C. (2018). The spectrum of T cell metabolism in health and disease. Nat Rev Immunol 18, 19–34.

    Article  CAS  Google Scholar 

  • Benjamin, D., Robay, D., Hindupur, S.K., Pohlmann, J., Colombi, M., El-Shemerly, M.Y., Maira, S.M., Moroni, C., Lane, H.A., and Hall, M.N. (2018). Dual inhibition of the lactate transporters MCT1 and MCT4 is synthetic lethal with metformin due to NAD+ depletion in cancer cells. Cell Rep 25, 3047–3058.e4.

    Article  CAS  Google Scholar 

  • Bosshart, P.D., Kalbermatter, D., Bonetti, S., and Fotiadis, D. (2019). Mechanistic basis of L-lactate transport in the SLC16 solute carrier family. Nat Commun 10, 2649.

    Article  Google Scholar 

  • Brooks, G.A. (2018). The Science and translation of lactate shuttle theory. Cell Metab 27, 757–785.

    Article  CAS  Google Scholar 

  • Buck, M.D., O’Sullivan, D., Klein Geltink, R.I., Curtis, J.D., Chang, C.H., Sanin, D.E., Qiu, J., Kretz, O., Braas, D., van der Windt, G.J.W., et al. (2016). Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76.

    Article  CAS  Google Scholar 

  • Calcinotto, A., Filipazzi, P., Grioni, M., Iero, M., De Milito, A., Ricupito, A., Cova, A., Canese, R., Jachetti, E., Rossetti, M., et al. (2012). Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72, 2746–2756.

    Article  CAS  Google Scholar 

  • Chang, C.H., Curtis, J.D., Maggi Jr., L.B., Faubert, B., Villarino, A.V., O’Sullivan, D., Huang, S.C.C., van der Windt, G.J.W., Blagih, J., Qiu, J., et al. (2013). Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251.

    Article  CAS  Google Scholar 

  • Chao, M., Wu, H., Jin, K., Li, B., Wu, J., Zhang, G., Yang, G., and Hu, X. (2016). A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis. eLife 5, e15691.

    Article  Google Scholar 

  • Dashty, M. (2013). A quick look at biochemistry: carbohydrate metabolism. Clin Biochem 46, 1339–1352.

    Article  CAS  Google Scholar 

  • Delgoffe, G.M., and Powell, J.D. (2015). Sugar, fat, and protein: new insights into what T cells crave. Curr Opin Immunol 33, 49–54.

    Article  CAS  Google Scholar 

  • Faubert, B., Li, K.Y., Cai, L., Hensley, C.T., Kim, J., Zacharias, L.G., Yang, C., Do, Q.N., Doucette, S., Burguete, D., et al. (2017). Lactate metabolism in human lung tumors. Cell 171, 358–371.e9.

    Article  CAS  Google Scholar 

  • Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., et al. (2007). Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812–3819.

    Article  CAS  Google Scholar 

  • Fox, C.J., Hammerman, P.S., and Thompson, C.B. (2005). Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 5, 844–852.

    Article  CAS  Google Scholar 

  • Haas, R., Smith, J., Rocher-Ros, V., Nadkarni, S., Montero-Melendez, T., D’Acquisto, F., Bland, E.J., Bombardieri, M., Pitzalis, C., Perretti, M., et al. (2015). Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol 13, e1002202.

    Article  Google Scholar 

  • Halestrap, A.P. (2013). The SLC16 gene family—Structure, role and regulation in health and disease. Mol Aspects Med 34, 337–349.

    Article  CAS  Google Scholar 

  • Hui, S., Ghergurovich, J.M., Morscher, R.J., Jang, C., Teng, X., Lu, W., Esparza, L.A., Reya, T., Zhan, L., Guo, J.Y., et al. (2017). Glucose feeds the TCA cycle via circulating lactate. Nature 551, 115–118.

    Article  Google Scholar 

  • Mendler, A.N., Hu, B., Prinz, P.U., Kreutz, M., Gottfried, E., and Noessner, E. (2012). Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer 131, 633–640.

    Article  CAS  Google Scholar 

  • Menk, A.V., Scharping, N.E., Moreci, R.S., Zeng, X., Guy, C., Salvatore, S., Bae, H., Xie, J., Young, H.A., Wendell, S.G., et al. (2018). Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep 22, 1509–1521.

    Article  CAS  Google Scholar 

  • Millet, P., Vachharajani, V., McPhail, L., Yoza, B., and McCall, C.E. (2016). GAPDH binding to TNF-α mRNA contributes to posttranscriptional repression in monocytes: A novel mechanism of communication between inflammation and metabolism. J Immunol 196, 2541–2551.

    Article  CAS  Google Scholar 

  • Morris, A.R., Mukherjee, N., and Keene, J.D. (2010). Systematic analysis of posttranscriptional gene expression. WIREs Syst Biol Med 2, 162–180.

    Article  CAS  Google Scholar 

  • Murray, C.M., Hutchinson, R., Bantick, J.R., Belfield, G.P., Benjamin, A. D., Brazma, D., Bundick, R.V., Cook, I.D., Craggs, R.I., Edwards, S., et al. (2005). Monocarboxylate transporter MCT1 is a target for immunosuppression. Nat Chem Biol 1, 371–376.

    Article  CAS  Google Scholar 

  • O’Neill, L.A.J., Kishton, R.J., and Rathmell, J. (2016). A guide to immunometabolism for immunologists. Nat Rev Immunol 16, 553–565.

    Article  Google Scholar 

  • Pearce, E.L., and Pearce, E.J. (2013). Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643.

    Article  CAS  Google Scholar 

  • Peng, M., Yin, N., Chhangawala, S., Xu, K., Leslie, C.S., and Li, M.O. (2016). Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484.

    Article  CAS  Google Scholar 

  • Pilon-Thomas, S., Kodumudi, K.N., El-Kenawi, A.E., Russell, S., Weber, A.M., Luddy, K., Damaghi, M., Wojtkowiak, J.W., Mulé, J.J., Ibrahim-Hashim, A., et al. (2016). Neutralization of tumor acidity improves antitumor responses to immunotherapy. Cancer Res 76, 1381–1390.

    Article  CAS  Google Scholar 

  • Powell, M.J., Thompson, S.A.J., Tone, Y., Waldmann, H., and Tone, M. (2000). Posttranscriptional regulation of IL-10 gene expression through sequences in the 3′-untranslated region. J Immunol 165, 292–296.

    Article  CAS  Google Scholar 

  • Pucino, V., Certo, M., Bulusu, V., Cucchi, D., Goldmann, K., Pontarini, E., Haas, R., Smith, J., Headland, S.E., Blighe, K., et al. (2019). Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab 30, 1055–1074.e8.

    Article  CAS  Google Scholar 

  • Romero-Garcia, S., Moreno-Altamirano, M.M.B., Prado-Garcia, H., and Sánchez-García, F.J. (2016). Lactate contribution to the tumor microenvironment: mechanisms, effects on immune cells and therapeutic relevance. Front Immunol 7, 52.

    Article  Google Scholar 

  • Rundqvist, H., Veliça, P., Barbieri, L., Gameiro, P.A., Cunha, P.P., Gojkovic, M., Mijwel, S., Ahlstedt, E., Foskolou, I.P., Ruiz-Pérez, M.V. et al. (2019). Lactate potentiates differentiation and expansion of cytotoxic T cells. bioRxiv, 571745.

  • Sharma, A., Kumar, M., Aich, J., Hariharan, M., Brahmachari, S.K., Agrawal, A., and Ghosh, B. (2009). Posttranscriptional regulation of interleukin-10 expression by hsa-miR-106a. Proc Natl Acad Sci USA 106, 5761–5766.

    Article  CAS  Google Scholar 

  • Vlasova-St. Louis, I., and Bohjanen, P.R. (2017). Post-transcriptional regulation of cytokine and growth factor signaling in cancer. Cytokine Growth Factor Rev 33, 83–93.

    Article  CAS  Google Scholar 

  • Wei, Y., Zhang, F., Zhang, Y., Wang, X., Xing, C., Guo, J., Zhang, H., Suo, Z., Li, Y., Wang, J., et al. (2019). Post-transcriptional regulator Rbm47 elevates IL-10 production and promotes the immunosuppression of B cells. Cell Mol Immunol 16, 580–589.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFA0507402 and 2016YFA0502202) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB19000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaguang Zhang, Xinghao Ai or Bing Sun.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, J., Cheng, S., Zhang, Y. et al. Lactate anions participate in T cell cytokine production and function. Sci. China Life Sci. 64, 1895–1905 (2021). https://doi.org/10.1007/s11427-020-1887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1887-7

Keywords

Navigation