Skip to main content
Log in

Neutrophils in cancer—unresolved questions

  • Review
  • SCLS-CBIS Joint Life Science Research Workshop
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

There is growing recognition that neutrophils play an important role in cancer initiation, progression and metastasis. Although they are typically characterized as short-lived effector cells, neutrophils have been shown to acquire immunosuppressive and pro-tumorigenic functions that promote tumor progression and escape. As such, inhibition of their function or depletion of neutrophils are being explored as potential cancer therapies. However, growing evidence of neutrophil diversification in cancer and their potential anti-tumor roles raise many unresolved questions. Here, we review recent advances that address the definition, origin and function of neutrophils in cancer, and elaborate on obstacles that make the study of neutrophils challenging. We envision that this review will provide the groundwork for focused design of therapeutics that will specifically target “tumorreprogrammed” neutrophils while sparing normal neutrophils to improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarts, C.E.M., Hiemstra, I.H., Béguin, E.P., Hoogendijk, A.J., Bouchmal, S., van Houdt, M., Tool, A.T.J., Mul, E., Jansen, M.H., Janssen, H., et al. (2019). Activated neutrophils exert myeloid-derived suppressor cell activity damaging T cells beyond repair. Blood Adv 3, 3562–3574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aarts, C.E.M., and Kuijpers, T.W. (2018). Neutrophils as myeloid-derived suppressor cells. Eur J Clin Invest 48, e12989.

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal, V., Tuli, H.S., Varol, A., Thakral, F., Yerer, M.B., Sak, K., Varol, M., Jain, A., Khan, M.A., and Sethi, G. (2019). Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules 9, 735.

    Article  CAS  PubMed Central  Google Scholar 

  • Akbay, E.A., Koyama, S., Liu, Y., Dries, R., Bufe, L.E., Silkes, M., Alam, M.M., Magee, D.M., Jones, R., Jinushi, M., et al. (2017). Interleukin-17A promotes lung tumor progression through neutrophil attraction to tumor sites and mediating resistance to PD-1 blockade. J Thorac Oncol 12, 1268–1279.

    Article  PubMed  PubMed Central  Google Scholar 

  • Albrengues, J., Shields, M.A., Ng, D., Park, C.G., Ambrico, A., Poindexter, M.E., Upadhyay, P., Uyeminami, D.L., Pommier, A., Küttner, V., et al. (2018). Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alshetaiwi, H., Pervolarakis, N., McIntyre, L.L., Ma, D., Nguyen, Q., Rath, J.A., Nee, K., Hernandez, G., Evans, K., Torosian, L., et al. (2020). Defining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomics. Sci Immunol 5, eaay6017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry, R.S., Xiong, M.J., Greenbaum, A., Mortaji, P., Nofchissey, R.A., Schultz, F., Martinez, C., Luo, L., Morris, K.T., and Hanson, J.A. (2017). High levels of tumor-associated neutrophils are associated with improved overall survival in patients with stage II colorectal cancer. PLoS ONE 12, e0188799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bronte, V., Brandau, S., Chen, S.H., Colombo, M.P., Frey, A.B., Greten, T. F., Mandruzzato, S., Murray, P.J., Ochoa, A., Ostrand-Rosenberg, S., et al. (2016). Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7, 12150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandau, S., Trellakis, S., Bruderek, K., Schmaltz, D., Steller, G., Elian, M., Suttmann, H., Schenck, M., Welling, J., Zabel, P., et al. (2011). Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukocyte Biol 89, 311–317.

    Article  CAS  PubMed  Google Scholar 

  • Caruso, J.A., Akli, S., Pageon, L., Hunt, K.K., and Keyomarsi, K. (2015). The serine protease inhibitor elafin maintains normal growth control by opposing the mitogenic effects of neutrophil elastase. Oncogene 34, 3556–3567.

    Article  CAS  PubMed  Google Scholar 

  • Casbon, A.J., Reynaud, D., Park, C., Khuc, E., Gan, D.D., Schepers, K., Passegué, E., and Werb, Z. (2015). Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci USA 112, E566–E575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassetta, L., Baekkevold, E.S., Brandau, S., Bujko, A., Cassatella, M.A., Dorhoi, A., Krieg, C., Lin, A., Loré, K., Marini, O., et al. (2019). Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates. Cancer Immunol Immunother 68, 687–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai, E.Q., Zhang, L., and Li, C. (2019). LOX-1+ PMN-MDSC enhances immune suppression which promotes glioblastoma multiforme progression. CMAR Volume 11, 7307–7315.

    Article  CAS  Google Scholar 

  • Chang, N.W., Wu, C.T., Chen, D.R., Yeh, C.Y., and Lin, C. (2013). High levels of arachidonic acid and peroxisome proliferator-activated receptor-alpha in breast cancer tissues are associated with promoting cancer cell proliferation. J Nutr Biochem 24, 274–281.

    Article  CAS  PubMed  Google Scholar 

  • Chao, T., Furth, E.E., and Vonderheide, R.H. (2016). CXCR2-dependent accumulation of tumor-associated neutrophils regulates T-cell immunity in pancreatic ductal adenocarcinoma. Cancer Immunol Res 4, 968–982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffelt, S.B., Wellenstein, M.D., and de Visser, K.E. (2016). Neutrophils in cancer: neutral no more. Nat Rev Cancer 16, 431–446.

    Article  CAS  PubMed  Google Scholar 

  • Condamine, T., Dominguez, G.A., Youn, J.I., Kossenkov, A.V., Mony, S., Alicea-Torres, K., Tcyganov, E., Hashimoto, A., Nefedova, Y., Lin, C., et al. (2016). Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol 1, aaf8943.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cortez-Retamozo, V., Etzrodt, M., Newton, A., Rauch, P.J., Chudnovskiy, A., Berger, C., Ryan, R.J.H., Iwamoto, Y., Marinelli, B., Gorbatov, R., et al. (2012). Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA 109, 2491–2496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa, S., Bevilacqua, D., Cassatella, M.A., and Scapini, P. (2019). Recent advances on the crosstalk between neutrophils and B or T lymphocytes. Immunology 156, 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Duwe, A.K., and Singhal, S.K. (1979). The immunoregulatory role of bone marrow. Cell Immunol 43, 362–371.

    Article  CAS  PubMed  Google Scholar 

  • Engblom, C., Pfirschke, C., Zilionis, R., Da Silva Martins, J., Bos, S.A., Courties, G., Rickelt, S., Severe, N., Baryawno, N., Faget, J., et al. (2017). Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358, eaal5081.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eruslanov, E.B., Bhojnagarwala, P.S., Quatromoni, J.G., Stephen, T.L., Ranganathan, A., Deshpande, C., Akimova, T., Vachani, A., Litzky, L., Hancock, W.W., et al. (2014). Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest 124, 5466–5480.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evrard, M., Kwok, I.W.H., Chong, S.Z., Teng, K.W.W., Becht, E., Chen, J., Sieow, J.L., Penny, H.L., Ching, G.C., Devi, S., et al. (2018). Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364–379.e8.

    Article  CAS  PubMed  Google Scholar 

  • Faget, J., Groeneveld, S., Boivin, G., Sankar, M., Zangger, N., Garcia, M., Guex, N., Zlobec, I., Steiner, L., Piersigilli, A., et al. (2017). Neutrophils and snail orchestrate the establishment of a pro-tumor microenvironment in lung cancer. Cell Rep 21, 3190–3204.

    Article  CAS  PubMed  Google Scholar 

  • Fridlender, Z.G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., Worthen, G.S., and Albelda, S.M. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fridlender, Z.G., Sun, J., Mishalian, I., Singhal, S., Cheng, G., Kapoor, V., Horng, W., Fridlender, G., Bayuh, R., Worthen, G.S., et al. (2012). Transcriptomic analysis comparing tumor-associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PLoS ONE 7, e31524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabrilovich, D.I., Bronte, V., Chen, S.H., Colombo, M.P., Ochoa, A., Ostrand-Rosenberg, S., and Schreiber, H. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Res 67, 425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentles, A.J., Newman, A.M., Liu, C.L., Bratman, S.V., Feng, W., Kim, D., Nair, V.S., Xu, Y., Khuong, A., Hoang, C.D., et al. (2015). The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21, 938–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Germann, M., Zangger, N., Sauvain, M.O., Sempoux, C., Bowler, A.D., Wirapati, P., Kandalaft, L.E., Delorenzi, M., Tejpar, S., Coukos, G., et al. (2020). Neutrophils suppress tumor-infiltrating T cells in colon cancer via matrix metalloproteinase-mediated activation of TGF β. EMBO Mol Med 12.

  • Governa, V., Trella, E., Mele, V., Tornillo, L., Amicarella, F., Cremonesi, E., Muraro, M.G., Xu, H., Droeser, R., Däster, S.R., et al. (2017). The interplay between neutrophils and CD8+ T cells improves survival in human colorectal cancer. Clin Cancer Res 23, 3847–3858.

    Article  CAS  PubMed  Google Scholar 

  • Greene, S., Robbins, Y., Mydlarz, W.K., Huynh, A.P., Schmitt, N.C., Friedman, J., Horn, L.A., Palena, C., Schlom, J., Maeda, D.Y., et al. (2020). Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models. Clin Cancer Res 26, 1420–1431.

    Article  CAS  PubMed  Google Scholar 

  • Hassani, M., Hellebrekers, P., Chen, N., van Aalst, C., Bongers, S., Hietbrink, F., Koenderman, L., and Vrisekoop, N. (2020). On the origin of low-density neutrophils. J Leukoc Biol 107, 809–818.

    Article  CAS  PubMed  Google Scholar 

  • He, M., Peng, A., Huang, X.Z., Shi, D.C., Wang, J.C., Zhao, Q., Lin, H., Kuang, D.M., Ke, P.F., and Lao, X.M. (2016). Peritumoral stromal neutrophils are essential for c-Met-elicited metastasis in human hepatocellular carcinoma. Oncoimmunology 5, e1219828.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirakawa, Y., Ogata, T., Sasada, T., Yamashita, T., Itoh, K., Tanaka, H., and Okuda, K. (2019). Immunological consequences following splenectomy in patients with liver cirrhosis. Exp Ther Med., doi: https://doi.org/10.3892/etm.2019.7640.

  • Houghton, A.M.G., Rzymkiewicz, D.M., Ji, H., Gregory, A.D., Egea, E.E., Metz, H.E., Stolz, D.B., Land, S.R., Marconcini, L.A., Kliment, C.R., et al. (2010). Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16, 219–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ijsselsteijn, M.E., van der Breggen, R., Farina Sarasqueta, A., Koning, F., and de Miranda, N.F.C.C. (2019). A 40-marker panel for high dimensional characterization of cancer immune microenvironments by imaging mass cytometry. Front Immunol 10.

  • Jaillon, S., Ponzetta, A., Di Mitri, D., Santoni, A., Bonecchi, R., and Mantovani, A. (2020). Neutrophil diversity and plasticity in tumour progression and therapy. Nat Rev Cancer 20, 485–503.

    Article  CAS  PubMed  Google Scholar 

  • Jamieson, T., Clarke, M., Steele, C.W., Samuel, M.S., Neumann, J., Jung, A., Huels, D., Olson, M.F., Das, S., Nibbs, R.J.B., et al. (2012). Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Invest 122, 3127–3144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kargl, J., Zhu, X., Zhang, H., Yang, G.H.Y., Friesen, T.J., Shipley, M., Maeda, D.Y., Zebala, J.A., McKay-Fleisch, J., Meredith, G., et al. (2019). Neutrophil content predicts lymphocyte depletion and anti-PD1 treatment failure in NSCLC. JCI Insight 4.

  • Kitano, Y., Okabe, H., Yamashita, Y.I., Nakagawa, S., Saito, Y., Umezaki, N., Tsukamoto, M., Yamao, T., Yamamura, K., Arima, K., et al. (2018). Tumour-infiltrating inflammatory and immune cells in patients with extrahepatic cholangiocarcinoma. Br J Cancer 118, 171–180.

    Article  CAS  PubMed  Google Scholar 

  • Langereis, J.D., Pickkers, P., de Kleijn, S., Gerretsen, J., de Jonge, M.I., and Kox, M. (2017). Spleen-derived IFN-γ induces generation of PD-L1+-suppressive neutrophils during endotoxemia. J Leukoc Biol 102, 1401–1409.

    Article  CAS  PubMed  Google Scholar 

  • Law, A.M.K., Valdes-Mora, F., and Gallego-Ortega, D. (2020). Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells 9, 561.

    Article  CAS  PubMed Central  Google Scholar 

  • Lee, W.J., Ko, S.Y., Mohamed, M.S., Kenny, H.A., Lengyel, E., and Naora, H. (2019). Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J Exp Med 216, 176–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leliefeld, P.H.C., Koenderman, L., and Pillay, J. (2015). How neutrophils shape adaptive immune responses. Front Immunol 6.

  • Lerman, I., Garcia-Hernandez, M.L., Rangel-Moreno, J., Chiriboga, L., Pan, C., Nastiuk, K.L., Krolewski, J.J., Sen, A., and Hammes, S.R. (2017). Infiltrating myeloid cells exert protumorigenic actions via neutrophil elastase. Mol Cancer Res 15, 1138–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy, L., Mishalian, I., Bayuch, R., Zolotarov, L., Michaeli, J., and Fridlender, Z.G. (2015). Splenectomy inhibits non-small cell lung cancer growth by modulating anti-tumor adaptive and innate immune response. Oncoimmunology 4, e998469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, M., Lin, C., Deng, H., Strnad, J., Bernabei, L., Vogl, D.T., Burke, J.J., and Nefedova, Y. (2020). A novel peptidylarginine deiminase 4 (PAD4) inhibitor BMS-P5 blocks formation of neutrophil extracellular traps and delays progression of multiple myeloma. Mol Cancer Ther 19, 1530–1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, T.J., Jiang, Y.M., Hu, Y.F., Huang, L., Yu, J., Zhao, L.Y., Deng, H.J., Mou, T.Y., Liu, H., Yang, Y., et al. (2017). Interleukin-17-producing neutrophils link inflammatory stimuli to disease progression by promoting angiogenesis in gastric cancer. Clin Cancer Res 23, 1575–1585.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Wang, W., Yang, F., Xu, Y., Feng, C., and Zhao, Y. (2019). The regulatory roles of neutrophils in adaptive immunity. Cell Commun Signal 17, 147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, Z., Lian, B., Chen, J., Song, D., and Zhao, Q. (2019). Systematic review and meta-analysis of splenectomy in gastrectomy for gastric carcinoma. Int J Surg 68, 104–113.

    Article  PubMed  Google Scholar 

  • Mahiddine, K., Blaisdell, A., Ma, S., Créquer-Grandhomme, A., Lowell, C. A., and Erlebacher, A. (2020). Relief of tumor hypoxia unleashes the tumoricidal potential of neutrophils. J Clin Invest 130, 389–403.

    Article  CAS  PubMed  Google Scholar 

  • Miret, J.J., Kirschmeier, P., Koyama, S., Zhu, M., Li, Y.Y., Naito, Y., Wu, M., Malladi, V.S., Huang, W., Walker, W., et al. (2019). Suppression of myeloid cell arginase activity leads to therapeutic response in a NSCLC mouse model by activating anti-tumor immunity. J Immunother Cancer 7, 32.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishalian, I., Bayuh, R., Eruslanov, E., Michaeli, J., Levy, L., Zolotarov, L., Singhal, S., Albelda, S.M., Granot, Z., and Fridlender, Z.G. (2014). Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17-A new mechanism of impaired antitumor immunity. Int J Cancer 135, 1178–1186.

    Article  CAS  PubMed  Google Scholar 

  • Mishalian, I., Bayuh, R., Levy, L., Zolotarov, L., Michaeli, J., and Fridlender, Z.G. (2013). Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol Immunother 62, 1745–1756.

    Article  CAS  PubMed  Google Scholar 

  • Monaco, G., Lee, B., Xu, W., Mustafah, S., Hwang, Y.Y., Carré, C., Burdin, N., Visan, L., Ceccarelli, M., Poidinger, M., et al. (2019). RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep 26, 1627–1640.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukaida, N., Sasaki, S.I., and Baba, T. (2020). Two-faced roles of tumor-associated neutrophils in cancer development and progression. Int J Mol Sci 21, 3457.

    Article  CAS  PubMed Central  Google Scholar 

  • Nan, J., Xing, Y.F., Hu, B., Tang, J.X., Dong, H.M., He, Y.M., Ruan, D.Y., Ye, Q.J., Cai, J.R., Ma, X.K., et al. (2018). Endoplasmic reticulum stress induced LOX-1+ CD15+ polymorphonuclear myeloid-derived suppressor cells in hepatocellular carcinoma. Immunology 154, 144–155.

    Article  CAS  PubMed  Google Scholar 

  • Negorev, D., Beier, U.H., Zhang, T., Quatromoni, J.G., Bhojnagarwala, P., Albelda, S.M., Singhal, S., Eruslanov, E., Lohoff, F.W., Levine, M.H., et al. (2018). Human neutrophils can mimic myeloid-derived suppressor cells (PMN-MDSC) and suppress microbead or lectin-induced T cell proliferation through artefactual mechanisms. Sci Rep 8, 3135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ng, L.G., Ostuni, R., and Hidalgo, A. (2019). Heterogeneity of neutrophils. Nat Rev Immunol 19, 255–265.

    Article  CAS  PubMed  Google Scholar 

  • Nicolás-Ávila, J.Á., Adrover, J.M., and Hidalgo, A. (2017). Neutrophils in homeostasis, immunity, and cancer. Immunity 46, 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Nishida, J., Momoi, Y., Miyakuni, K., Tamura, Y., Takahashi, K., Koinuma, D., Miyazono, K., and Ehata, S. (2020). Epigenetic remodelling shapes inflammatory renal cancer and neutrophil-dependent metastasis. Nat Cell Biol 22, 465–475.

    Article  CAS  PubMed  Google Scholar 

  • Ogata, T., Okuda, K., Sato, T., Hirakawa, Y., Yasunaga, M., Horiuchi, H., Nomura, Y., Kage, M., Ide, T., Kuromatsu, R., et al. (2013). Long-term outcome of splenectomy in advanced cirrhotic patients with hepatocellular carcinoma and thrombocytopenia. Kurume Med J 60, 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Oseroff, A., Okada, S., and Strober, S. (1984). Natural suppressor (NS) cells found in the spleen of neonatal mice and adult mice given total lymphoid irradiation (TLI) express the null surface phenotype. J Immunol 132, 101–110.

    CAS  PubMed  Google Scholar 

  • Ostrand-Rosenberg, S., and Fenselau, C. (2018). Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J Immunol 200, 422–431.

    Article  CAS  PubMed  Google Scholar 

  • Ouzounova, M., Lee, E., Piranlioglu, R., El Andaloussi, A., Kolhe, R., Demirci, M.F., Marasco, D., Asm, I., Chadli, A., Hassan, K.A., et al. (2017). Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade. Nat Commun 8, 14979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papayannopoulos, V. (2018). Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18, 134–147.

    Article  CAS  PubMed  Google Scholar 

  • Patel, S., Fu, S., Mastio, J., Dominguez, G.A., Purohit, A., Kossenkov, A., Lin, C., Alicea-Torres, K., Sehgal, M., Nefedova, Y., et al. (2018). Unique pattern of neutrophil migration and function during tumor progression. Nat Immunol 19, 1236–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pillay, J., Tak, T., Kamp, V.M., and Koenderman, L. (2013). Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci 70, 3813–3827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponzetta, A., Carriero, R., Carnevale, S., Barbagallo, M., Molgora, M., Perucchini, C., Magrini, E., Gianni, F., Kunderfranco, P., Polentarutti, N., et al. (2019). Neutrophils driving unconventional t cells mediate resistance against murine sarcomas and selected human tumors. Cell 178, 346–360.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell, D.R., and Huttenlocher, A. (2016). Neutrophils in the tumor microenvironment. Trends Immunol 37, 41–52.

    Article  CAS  PubMed  Google Scholar 

  • Queen, M.M., Ryan, R.E., Holzer, R.G., Keller-Peck, C.R., and Jorcyk, C. L. (2005). Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 65, 8896–8904.

    Article  CAS  PubMed  Google Scholar 

  • Rapoport, B.L., Steel, H.C., Theron, A.J., Smit, T., and Anderson, R. (2020). Role of the neutrophil in the pathogenesis of advanced cancer and impaired responsiveness to therapy. Molecules 25, 1618.

    Article  CAS  PubMed Central  Google Scholar 

  • Rayes, R.F., Mouhanna, J.G., Nicolau, I., Bourdeau, F., Giannias, B., Rousseau, S., Quail, D., Walsh, L., Sangwan, V., Bertos, N., et al. (2019). Primary tumors induce neutrophil extracellular traps with targetable metastasis-promoting effects. JCI Insight 4.

  • Rodriguez, P.C., Quiceno, D.G., Zabaleta, J., Ortiz, B., Zea, A.H., Piazuelo, M.B., Delgado, A., Correa, P., Brayer, J., Sotomayor, E.M., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64, 5839–5849.

    Article  CAS  PubMed  Google Scholar 

  • Sacchi, A., Tumino, N., Grassi, G., Casetti, R., Cimini, E., Bordoni, V., Ammassari, A., Antinori, A., and Agrati, C. (2018). A new procedure to analyze polymorphonuclear myeloid derived suppressor cells in cryopreserved samples cells by flow cytometry. PLoS ONE 13, e0202920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadot, E., Basturk, O., Klimstra, D.S., Gönen, M., Lokshin, A., Do, R.K.G., D’Angelica, M.I., DeMatteo, R.P., Kingham, T.P., Jarnagin, W.R., et al. (2015). Tumor-associated neutrophils and malignant progression in intraductal papillary mucinous neoplasms. Ann Surg 262, 1102–1107.

    Article  PubMed  Google Scholar 

  • Sagiv, J.Y., Michaeli, J., Assi, S., Mishalian, I., Kisos, H., Levy, L., Damti, P., Lumbroso, D., Polyansky, L., Sionov, R.V., et al. (2015). Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep 10, 562–573.

    Article  CAS  PubMed  Google Scholar 

  • Sangaletti, S., Talarico, G., Chiodoni, C., Cappetti, B., Botti, L., Portararo, P., Gulino, A., Consonni, F.M., Sica, A., Randon, G., et al. (2019). SPARC is a new myeloid-derived suppressor cell marker licensing suppressive activities. Front Immunol 10.

  • Schmielau, J., and Finn, O.J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res 61, 4756–4760.

    CAS  PubMed  Google Scholar 

  • Sevmis, M., Yoyen-Ermis, D., Aydin, C., Bilgic, E., Korkusuz, P., Uner, A., Hamaloglu, E., Esendagli, G., and Karakoc, D. (2017). Splenectomyinduced leukocytosis promotes intratumoral accumulation of myeloid-derived suppressor cells, angiogenesis and metastasis. Immunol Invest 46, 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Shaul, M.E., and Fridlender, Z.G. (2019). Tumour-associated neutrophils in patients with cancer. Nat Rev Clin Oncol 16, 601–620.

    Article  PubMed  Google Scholar 

  • Si, Y., Merz, S.F., Jansen, P., Wang, B., Bruderek, K., Altenhoff, P., Mattheis, S., Lang, S., Gunzer, M., Klode, J., et al. (2019). Multidimensional imaging provides evidence for down-regulation of T cell effector function by MDSC in human cancer tissue. Sci Immunol 4, eaaw9159.

    Article  CAS  PubMed  Google Scholar 

  • Simonneau, M., Frouin, E., Huguier, V., Jermidi, C., Jégou, J.F., Godet, J., Barra, A., Paris, I., Levillain, P., Cordier-Dirikoc, S., et al. (2018). Oncostatin M is overexpressed in skin squamous-cell carcinoma and promotes tumor progression. Oncotarget 9, 36457–36473.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singhal, S., Bhojnagarwala, P.S., O’Brien, S., Moon, E.K., Garfall, A.L., Rao, A.S., Quatromoni, J.G., Stephen, T.L., Litzky, L., Deshpande, C., et al. (2016). Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell 30, 120–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siret, C., Collignon, A., Silvy, F., Robert, S., Cheyrol, T., André, P., Rigot, V., Iovanna, J., van de Pavert, S., Lombardo, D., et al. (2020). Deciphering the crosstalk between myeloid-derived suppressor cells and regulatory T cells in pancreatic ductal adenocarcinoma. Front Immunol 10.

  • Slavin, S., and Strober, S. (1979). Induction of allograft tolerance after total lymphoid irradiation (TLI): development of suppressor cells of the mixed leukocyte reaction (MLR). J Immunol 123, 942–946.

    CAS  PubMed  Google Scholar 

  • Spiegel, A., Brooks, M.W., Houshyar, S., Reinhardt, F., Ardolino, M., Fessler, E., Chen, M.B., Krall, J.A., DeCock, J., Zervantonakis, I.K., et al. (2016). Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov 6, 630–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprouse, M.L., Welte, T., Boral, D., Liu, H.N., Yin, W., Vishnoi, M., Goswami-Sewell, D., Li, L., Pei, G., Jia, P., et al. (2019). PMN-MDSCs enhance CTC metastatic properties through reciprocal interactions via ROS/Notch/Nodal signaling. Int J Mol Sci 20, 1916.

    Article  CAS  PubMed Central  Google Scholar 

  • Stackowicz, J., Jönsson, F., and Reber, L.L. (2020). Mouse models and tools for the in vivo study of neutrophils. Front Immunol 10.

  • Steeg, P.S. (2016). Targeting metastasis. Nat Rev Cancer 16, 201–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczerba, B.M., Castro-Giner, F., Vetter, M., Krol, I., Gkountela, S., Landin, J., Scheidmann, M.C., Donato, C., Scherrer, R., Singer, J., et al. (2019). Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 566, 553–557.

    Article  CAS  PubMed  Google Scholar 

  • Takakura, K., Ito, Z., Suka, M., Kanai, T., Matsumoto, Y., Odahara, S., Matsudaira, H., Haruki, K., Fujiwara, Y., Saito, R., et al. (2016). Comprehensive assessment of the prognosis of pancreatic cancer: peripheral blood neutrophil-lymphocyte ratio and immunohistochemical analyses of the tumour site. Scandinav J Gastroenterol 51, 610–617.

    Article  CAS  Google Scholar 

  • Takesue, S., Ohuchida, K., Shinkawa, T., Otsubo, Y., Matsumoto, S., Sagara, A., Yonenaga, A., Ando, Y., Kibe, S., Nakayama, H., et al. (2019). Neutrophil extracellular traps promote liver micrometastasis in pancreatic ductal adenocarcinoma via the activation of cancer-associated fibroblasts. Int J Oncol., doi: https://doi.org/10.3892/ijo.2019.4951.

  • Talmadge, J.E., and Gabrilovich, D.I. (2013). History of myeloid-derived suppressor cells. Nat Rev Cancer 13, 739–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teijeira, Á., Garasa, S., Gato, M., Alfaro, C., Migueliz, I., Cirella, A., de Andrea, C., Ochoa, M.C., Otano, I., Etxeberria, I., et al. (2020). CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 52, 856–871.e8.

    Article  CAS  PubMed  Google Scholar 

  • Thålin, C., Lundström, S., Seignez, C., Daleskog, M., Lundström, A., Henriksson, P., Helleday, T., Phillipson, M., Wallén, H., and Demers, M. (2018). Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS ONE 13, e0191231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trovato, R., Fiore, A., Sartori, S., Canè, S., Giugno, R., Cascione, L., Paiella, S., Salvia, R., De Sanctis, F., Poffe, O., et al. (2019). Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3. J Immunother Cancer 7, 255.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ui Mhaonaigh, A., Coughlan, A.M., Dwivedi, A., Hartnett, J., Cabral, J., Moran, B., Brennan, K., Doyle, S.L., Hughes, K., Lucey, R., et al. (2019). Low density granulocytes in ANCA vasculitis are heterogenous and hypo-responsive to anti-myeloperoxidase antibodies. Front Immunol 10.

  • Veglia, F., Perego, M., and Gabrilovich, D. (2018). Myeloid-derived suppressor cells coming of age. Nat Immunol 19, 108–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veglia, F., Tyurin, V.A., Blasi, M., De Leo, A., Kossenkov, A.V., Donthireddy, L., To, T.K.J., Schug, Z., Basu, S., Wang, F., et al. (2019). Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 569, 73–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, T.T., Zhao, Y.L., Peng, L.S., Chen, N., Chen, W., Lv, Y.P., Mao, F.Y., Zhang, J.Y., Cheng, P., Teng, Y.S., et al. (2017). Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut 66, 1900–1911.

    Article  CAS  PubMed  Google Scholar 

  • Wculek, S.K., and Malanchi, I. (2015). Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weledji, E.P. (2014). Benefits and risks of splenectomy. Int J Surg 12, 113–119.

    Article  PubMed  Google Scholar 

  • Wikberg, M.L., Ling, A., Li, X., Öberg, Å., Edin, S., and Palmqvist, R. (2017). Neutrophil infiltration is a favorable prognostic factor in early stages of colon cancer. Human Pathol 68, 193–202.

    Article  CAS  Google Scholar 

  • Wu, A.A., Drake, V., Huang, H.S., Chiu, S.C., and Zheng, L. (2015). Reprogramming the tumor microenvironment: tumor-induced immunosuppressive factors paralyze T cells. Oncoimmunology 4, e1016700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, P., Wu, D., Ni, C., Ye, J., Chen, W., Hu, G., Wang, Z., Wang, C., Zhang, Z., Xia, W., et al. (2014). βδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40, 785–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamauchi, Y., Safi, S., Blattner, C., Rathinasamy, A., Umansky, L., Juenger, S., Warth, A., Eichhorn, M., Muley, T., Herth, F.J.F., et al. (2018). Circulating and tumor myeloid-derived suppressor cells in resectable non-small cell lung cancer. Am J Respir Crit Care Med 198, 777–787.

    Article  PubMed  Google Scholar 

  • Yang, L., Liu, Q., Zhang, X., Liu, X., Zhou, B., Chen, J., Huang, D., Li, J., Li, H., Chen, F., et al. (2020). DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature 583, 133–138.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Liu, L., Zhang, R., Hong, J., Wang, Y., Wang, J., Zuo, J., Zhang, J., Chen, J., and Hao, H. (2020). IL-8 mediates a positive loop connecting increased neutrophil extracellular traps (NETs) and colorectal cancer liver metastasis. J Cancer 11, 4384–4396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youn, J.I., Collazo, M., Shalova, I.N., Biswas, S.K., and Gabrilovich, D.I. (2012). Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J Leukoc Biol 91, 167–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youn, J.I., Nagaraj, S., Collazo, M., and Gabrilovich, D.I. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181, 5791–5802.

    Article  CAS  PubMed  Google Scholar 

  • Yvan-Charvet, L., and Ng, L.G. (2019). Granulopoiesis and neutrophil homeostasis: a metabolic, daily balancing act. Trends Immunol 40, 598–612.

    Article  CAS  PubMed  Google Scholar 

  • Zha, C., Meng, X., Li, L., Mi, S., Qian, D., Li, Z., Wu, P., Hu, S., Zhao, S., Cai, J., et al. (2020). Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biol Med 17, 154–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Xu, X., Shi, M., Chen, Y., Yu, D., Zhao, C., Gu, Y., Yang, B., Guo, S., Ding, G., et al. (2017). CD13hi neutrophil-like myeloid-derived suppressor cells exert immune suppression through Arginase 1 expression in pancreatic ductal adenocarcinoma. Oncoimmunology 6, e1258504.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, X., Li, C., Wen, T., Peng, W., Yan, L., Li, B., Yang, J., Wang, W., Xu, M., and Zeng, Y. (2017). Synchronous splenectomy and hepatectomy for patients with small hepatocellular carcinoma and pathological spleen: neutrophil to lymphocyte ratio changes can predict the prognosis. Oncotarget 8, 46298–46311.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Guoqiang, L., Sun, M., and Lu, X. (2020). Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment. Cancer Biol Med 17, 32–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, S.L., Zhou, Z.J., Hu, Z.Q., Huang, X.W., Wang, Z., Chen, E.B., Fan, J., Cao, Y., Dai, Z., and Zhou, J. (2016). Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to Sorafenib. Gastroenterology 150, 1646–1658.e17.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y.P., Padgett, L., Dinh, H.Q., Marcovecchio, P., Blatchley, A., Wu, R., Ehinger, E., Kim, C., Mikulski, Z., Seumois, G., et al. (2018). Identification of an early unipotent neutrophil progenitor with protumoral activity in mouse and human bone marrow. Cell Rep 24, 2329–2341.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilionis, R., Engblom, C., Pfirschke, C., Savova, V., Zemmour, D., Saatcioglu, H.D., Krishnan, I., Maroni, G., Meyerovitz, C.V., Kerwin, C.M., et al. (2019). Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Singapore Immunology Network (SigN) core funding, A*STAR, Singapore to L.G.N. The authors apologize to the many scientists who made contributions to the field but were not cited due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Melissa S. F. Ng or Lai Guan Ng.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, M.S.F., Tan, L., Wang, Q. et al. Neutrophils in cancer—unresolved questions. Sci. China Life Sci. 64, 1829–1841 (2021). https://doi.org/10.1007/s11427-020-1853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1853-4

Navigation