Skip to main content
Log in

Antisense oligonucleotide technology can be used to investigate a circular but not linear RNA-mediated function for its encoded gene locus

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

As a class of powerful molecular tool, antisense oligonucleotides (ASOs) are not only broadly used in protein and RNA biology, but also a highly selective therapeutic strategy for many diseases. Although the concept that ASO reagents only reduce expression of the targeted gene in a post-transcriptional manner has long been established, the effect and mechanism of ASO reagents on RNA polymerase II (Pol II) transcription are largely unknown. This raised question is particularly important for the appropriate use of ASOs and the valid interpretation of ASO-mediated experiments. In this study, our results show that linear RNA ASO attenuates transcription of nascent transcripts by inducing premature transcription termination which is combinatorially controlled by Integrator, exosome, and Rat1 in Drosophila. However, circular RNA (circRNA) ASO transfection does not affect transcription activity of the encoded gene. These data suggest that the ASO technique can be applied to study a circRNA-mediated but not linear RNA-mediated function for its encoded gene locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almada, A.E., Wu, X., Kriz, A.J., Burge, C.B., and Sharp, P.A. (2013). Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499, 360–363.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baillat, D., Hakimi, M.A., Näär, A.M., Shilatifard, A., Cooch, N., and Shiekhattar, R. (2005). Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265–276.

    CAS  PubMed  Google Scholar 

  • Baillat, D., and Wagner, E.J. (2015). Integrator: surprisingly diverse functions in gene expression. Trends Biochem Sci 40, 257–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker, B.F., Lot, S.S., Condon, T.P., Cheng-Flournoy, S., Lesnik, E.A., Sasmor, H.M., and Bennett, C.F. (1997). 2′-O-(2-methoxy)ethyl-modified anti-intercellular adhesion molecule 1 (ICAM-1) oligonucleotides selectively increase the ICAM-1 mRNA level and inhibit formation of the ICAM-1 translation initiation complex in human umbilical vein endothelial cells. J Biol Chem 272, 11994–12000.

    CAS  PubMed  Google Scholar 

  • Brannan, K., Kim, H., Erickson, B., Glover-Cutter, K., Kim, S., Fong, N., Kiemele, L., Hansen, K., Davis, R., Lykke-Andersen, J., et al. (2012). mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription. Mol Cell 46, 311–324.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cazalla, D., Xie, M., and Steitz, J.A. (2011). A primate herpesvirus uses the Integrator complex to generate viral microRNAs. Mol Cell 43, 982–992.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, J.H.P., Lim, S., and Wong, W.S.F. (2006). Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol 33, 533–540.

    CAS  PubMed  Google Scholar 

  • Chen, L., Huang, C., Wang, X., and Shan, G. (2015). Circular RNAs in eukaryotic cells. Curr Genomics 16, 312–318.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, J., Zhang, Y., Li, Z., Wang, T., Zhang, X., and Zheng, B. (2018). A lariat-derived circular RNA is required for plant development in Arabidopsis. Sci China Life Sci 61, 204–213.

    CAS  PubMed  Google Scholar 

  • Corey, D.R. (2017). Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat Neurosci 20, 497–499.

    CAS  PubMed  Google Scholar 

  • Do, D.V., Strauss, B., Cukuroglu, E., Macaulay, I., Wee, K.B., Hu, T.X., Igor, R.D.L.M., Lee, C., Harrison, A., Butler, R., et al. (2018). SRSF3 maintains transcriptome integrity in oocytes by regulation of alternative splicing and transposable elements. Cell Discov 4, 33.

    PubMed  PubMed Central  Google Scholar 

  • Elrod, N.D., Henriques, T., Huang, K.L., Tatomer, D.C., Wilusz, J.E., Wagner, E.J., and Adelman, K. (2019). The Integrator complex attenuates promoter-proximal transcription at protein-coding genes. Mol Cell 76, 738–752.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Günther, V., Lindert, U., and Schaffner, W. (2012). The taste of heavy metals: gene regulation by MTF-1. Biochim Biophys Acta 1823, 1416–1425.

    PubMed  Google Scholar 

  • Havens, M.A., and Hastings, M.L. (2016). Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res 44, 6549–6563.

    PubMed  PubMed Central  Google Scholar 

  • Heemskerk, H., de Winter, C., van Kuik, P., Heuvelmans, N., Sabatelli, P., Rimessi, P., Braghetta, P., van Ommen, G.J.B., de Kimpe, S., Ferlini, A., et al. (2010). Preclinical PK and PD studies on 2′-O-methylphosphorothioate RNA antisense oligonucleotides in the mdx mouse model. Mol Ther 18, 1210–1217.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoque, M., Ji, Z., Zheng, D., Luo, W., Li, W., You, B., Park, J.Y., Yehia, G., and Tian, B. (2013). Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10, 133–139.

    CAS  PubMed  Google Scholar 

  • Horwich, M.D., and Zamore, P.D. (2008). Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells. Nat Protoc 3, 1537–1549.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Houseley, J., and Tollervey, D. (2009). The many pathways of RNA degradation. Cell 136, 763–776.

    CAS  PubMed  Google Scholar 

  • Hu, S., Wang, X., and Shan, G. (2016). Insertion of an Alu element in a lncRNA leads to primate-specific modulation of alternative splicing. Nat Struct Mol Biol 23, 1011–1019.

    CAS  PubMed  Google Scholar 

  • Huang, A., Zheng, H., Wu, Z., Chen, M., and Huang, Y. (2020). Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics 10, 3503–3517.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C., Liang, D., Tatomer, D.C., and Wilusz, J.E. (2018). A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev 32, 639–644.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C., and Shan, G. (2015). What happens at or after transcription: Insights into circRNA biogenesis and function. Transcription 6, 61–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C., Wang, X., Liu, X., Cao, S., and Shan, G. (2015). RNAi pathway participates in chromosome segregation in mammalian cells. Cell Discov 1, 15029.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, R., Xiao, M.S., Li, Z., Shan, G., and Huang, C. (2019). Defining an evolutionarily conserved role of GW182 in circular RNA degradation. Cell Discov 5, 45.

    PubMed  PubMed Central  Google Scholar 

  • Kamieniarz-Gdula, K., and Proudfoot, N.J. (2019). Transcriptional control by premature termination: a forgotten mechanism. Trends Genets 35, 553–564.

    CAS  Google Scholar 

  • Kordasiewicz, H.B., Stanek, L.M., Wancewicz, E.V., Mazur, C., McAlonis, M.M., Pytel, K.A., Artates, J.W., Weiss, A., Cheng, S.H., Shihabuddin, L.S., et al. (2012). Sustained therapeutic reversal of Huntington’s disease by transient repression of Huntingtin synthesis. Neuron 74, 1031–1044.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krebs, A.R., Imanci, D., Hoerner, L., Gaidatzis, D., Burger, L., and Schübeler, D. (2017). Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused promoters. Mol Cell 67, 411–422.e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lai, F., Damle, S.S., Ling, K.K., and Rigo, F. (2020). Directed RNase H cleavage of nascent transcripts causes transcription termination. Mol Cell 77, 1032–1043.e4.

    CAS  PubMed  Google Scholar 

  • Lai, F., Gardini, A., Zhang, A., and Shiekhattar, R. (2015). Integrator mediates the biogenesis of enhancer RNAs. Nature 525, 399–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J.S., and Mendell, J.T. (2020). Antisense-mediated transcript knockdown triggers premature transcription termination. Mol Cell 77, 1044–1054.e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., Zhong, G., Yu, B., Hu, W., Dai, L., et al. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22, 256–264.

    PubMed  Google Scholar 

  • Li, Z., Kearse, M.G., and Huang, C. (2019). The nuclear export of circular RNAs is primarily defined by their length. RNA Biol 16, 1–4.

    PubMed  Google Scholar 

  • Liang, D., Tatomer, D.C., Luo, Z., Wu, H., Yang, L., Chen, L.L., Cherry, S., and Wilusz, J.E. (2017a). The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting. Mol Cell 68, 940–954.e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, X.H., Sun, H., Nichols, J.G., and Crooke, S.T. (2017b). RNase H1-dependent antisense oligonucleotides are robustly active in directing RNA cleavage in both the cytoplasm and the nucleus. Mol Ther 25, 2075–2092.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lianoglou, S., Garg, V., Yang, J.L., Leslie, C.S., and Mayr, C. (2013). Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev 27, 2380–2396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lima, W.F., Rose, J.B., Nichols, J.G., Wu, H., Migawa, M.T., Wyrzykiewicz, T.K., Siwkowski, A.M., and Crooke, S.T. (2007). Human RNase H1 discriminates between subtle variations in the structure of the heteroduplex substrate. Mol Pharmacol 71, 83–91.

    CAS  PubMed  Google Scholar 

  • Liu, X., Wang, X., Li, J., Hu, S., Deng, Y., Yin, H., Bao, X., Zhang, Q.C., Wang, G., Wang, B., et al. (2020). Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. Sci China Life Sci 63.

  • Malerba, A., Boldrin, L., and Dickson, G. (2011). Long-term systemic administration of unconjugated morpholino oligomers for therapeutic expression of dystrophin by exon skipping in skeletal muscle: implications for cardiac muscle integrity. Nucleic Acid Ther 21, 293–298.

    CAS  PubMed  Google Scholar 

  • Nechaev, S., Fargo, D.C., dos Santos, G., Liu, L., Gao, Y., and Adelman, K. (2010). Global analysis of short RNAs reveals widespread promoter-proximal stalling and arrest of Pol II in Drosophila. Science 327, 335–338.

    CAS  PubMed  Google Scholar 

  • Passini, M.A., Bu, J., Richards, A.M., Kinnecom, C., Sardi, S.P., Stanek, L. M., Hua, Y., Rigo, F., Matson, J., Hung, G., et al. (2011). Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 3, 72ra18.

    PubMed  PubMed Central  Google Scholar 

  • Rashid, F., Shah, A., and Shan, G. (2016). Long non-coding RNAs in the cytoplasm. Genom Proteom Bioinf 14, 73–80.

    Google Scholar 

  • Rienzo, M., and Casamassimi, A. (2016). Integrator complex and transcription regulation: Recent findings and pathophysiology. Biochim Biophys Acta 1859, 1269–1280.

    CAS  PubMed  Google Scholar 

  • Rinaldi, C., and Wood, M.J.A. (2018). Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat Rev Neurol 14, 9–21.

    CAS  PubMed  Google Scholar 

  • Rubtsova, M.P., Vasilkova, D.P., Moshareva, M.A., Malyavko, A.N., Meerson, M.B., Zatsepin, T.S., Naraykina, Y.V., Beletsky, A.V., Ravin, N.V., and Dontsova, O.A. (2019). Integrator is a key component of human telomerase RNA biogenesis. Sci Rep 9, 1701.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schoenberg, D.R., and Maquat, L.E. (2012). Regulation of cytoplasmic mRNA decay. Nat Rev Genet 13, 246–259.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sierakowska, H., Sambade, M.J., Agrawal, S., and Kole, R. (1996). Repair of thalassemic human β-globin mRNA in mammalian cells by antisense oligonucleotides. Proc Natl Acad Sci USA 93, 12840–12844.

    CAS  PubMed  Google Scholar 

  • Steurer, B., Janssens, R.C., Geverts, B., Geijer, M.E., Wienholz, F., Theil, A.F., Chang, J., Dealy, S., Pothof, J., van Cappellen, W.A., et al. (2018). Live-cell analysis ofendogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II. Proc Natl Acad Sci USA 115, E4368–E4376.

    CAS  PubMed  Google Scholar 

  • Tan, J., Gu, S., Zheng, Y., and Yang, H. (2019). Expression profile of circular RNAs in myocardial ischemia/reperfusion with and without intermittent hypobaric hypoxia preconditioning. Sci China Life Sci 62, 1104–1106.

    PubMed  Google Scholar 

  • Tatomer, D.C., Elrod, N.D., Liang, D., Xiao, M.S., Jiang, J.Z., Jonathan, M., Huang, K.L., Wagner, E.J., Cherry, S., and Wilusz, J.E. (2019). The Integrator complex cleaves nascent mRNAs to attenuate transcription. Genes Dev 33, 1525–1538.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagschal, A., Rousset, E., Basavarajaiah, P., Contreras, X., Harwig, A., Laurent-Chabalier, S., Nakamura, M., Chen, X., Zhang, K., Meziane, O., et al. (2012). Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell 150, 1147–1157.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilusz, J.E. (2017). Circular RNAs: Unexpected outputs of many protein-coding genes. RNA Biol 14, 1007–1017.

    PubMed  Google Scholar 

  • Wilusz, J.E. (2018). A 360° view of circular RNAs: From biogenesis to functions. WIREs RNA 9, e1478.

    PubMed  Google Scholar 

  • Wu, H., Lima, W.F., Zhang, H., Fan, A., Sun, H., and Crooke, S.T. (2004). Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs. J Biol Chem 279, 17181–17189.

    CAS  PubMed  Google Scholar 

  • Xiao, M.S., and Wilusz, J.E. (2019). An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res 47, 8755–8769.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, M., Zhang, W., Shu, M.D., Xu, A., Lenis, D.A., DiMaio, D., and Steitz, J.A. (2015). The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3• ends. Genes Dev 29, 1552–1564.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, P., Potdar, A.A., Arif, A., Ray, P.S., Mukhopadhyay, R., Willard, B., Xu, Y., Yan, J., Saidel, G.M., and Fox, P.L. (2012). Coding region polyadenylation generates a truncated tRNA synthetase that counters translation repression. Cell 149, 88–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, B., and Shan, G. (2016). Functions of long noncoding RNAs in the nucleus. Nucleus 7, 155–166.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, Y., Jia, W., Lyu, Y., Su, D., Bai, M., Shen, J., Qiao, J., Han, T., Liu, W., Chen, J., et al. (2019). Pwp1 regulates telomere length by stabilizing shelterin complex and maintaining histone H4K20 trimethylation. Cell Discov 5, 47.

    PubMed  PubMed Central  Google Scholar 

  • Zhu, S., Chen, Z., Wang, R., Tan, Y., Ge, M., Sun, Y., Li, D., Hu, Y., Zhao, C., Chen, Z., et al. (2019). MLL is required for miRNA-mediated translational repression. Cell Discov 5, 43.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Chongqing, China (cstc2019jcyj-msxmX0085), the Innovation Support Program for Overseas Returned Scholars of Chongqing, China (cx2019142), the Fundamental Research Funds for the Central Universities of China (2020CDJQY-A076), and the 100 Talent Program of Chongqing University (0304001104433). We thank the members of Xu Lab (Chongqing University) and Dr. Patricia Miele (University of Pennsylvania) for discussions, proofreading or technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Huang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Supporting Information

11427_2020_1743_MOESM1_ESM.pdf

Antisense oligonucleotide technology can be used to investigate a circular but not linear RNA-mediated function for its encoded gene locus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Jia, R., Tang, M. et al. Antisense oligonucleotide technology can be used to investigate a circular but not linear RNA-mediated function for its encoded gene locus. Sci. China Life Sci. 64, 784–794 (2021). https://doi.org/10.1007/s11427-020-1743-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1743-8

Navigation